Weighted Micro-Clustering :

Application to Community Detection in Large-Scale

Our Goal

Detecting communities from undirected graphs with vertex attributes.

Experiments

Data : Co-purchasing graph data from YAHUOKU!

YAHOO!

Books

Japanese

Literature

Novels

SF

Magazines

Cookbooks

French

Data set	CHARITY	PET	FOOD	BOOKS	SPORTS
Vertices	99	4,249	22,398	39,469	120,741
Edges	1,645	60,110	492,158	525,873	2,185,242
True Class	2	12	119	151	141

 Communities are vertices which probably share common properties and/or play similar roles within the graph [S. Fortunato 08].

Traditional methods

- 1. Propagation-based methods [C.D. Manning+ 08], [P. Judea+ 82] etc.
- 2. Modularity-based methods [V. Blondel+ 08], [M. Girvan+ 02] etc.
- 3. Clique-based methods [T. Uno+ 15], [G. Palla+ 05] etc.

Our Results

- Propose the new algorithm by extending Microclustering [T. Uno+ 15] to accept weighted graphs
- Apply our method to large-scale co-purchasing networks of real online auction data (YAHUOKU!)

Vertices represent buyers, and if two buyers buy products from almost the same sellers, their vertices are adjacent. **True class :** 3rd level categories of items user purchased User attributes : 2nd level categories of items user purchased

Results

Results of BOOKS data

Evaluation

Partition vertices by associating users with their most frequently purchased item categories.

Our Method : Weighted Micro-Clustering

 Simple and scalable soft-clustering method based on Micro-Clustering [T.Uno+ 15] for detecting communities from undirected graphs with vertex attributes

Algorithm

1. Compose a co-purchasing graph G = (V, E) from data.

- 2. Compose a polished graph $G_w = (V, E_w)$ from G where $E_w = \{(u, v) \mid sim_w(u, v) > \theta, |N(u) \cap N(v)| > 0, (u, v) \in E\},\$
 - $sim_w(u, v) = \frac{\sum_{n \in N(u) \cap N(v)} \min \left(J(\mathbf{u}, \mathbf{n}), J(\mathbf{v}, \mathbf{n}) \right)}{\sum}$

2. Measure NMI and Purity scores between the set of users in communities $\Omega = \{w_1, \ldots, w_M\}$ and in the true class $C = \{c_1, \ldots, c_L\}$

$$NMI(\Omega, C) = \frac{-2\sum_{m=1}^{M} \sum_{l=1}^{L} \frac{|w_m \cap c_l|}{S} \log \frac{S|w_m \cap c_l|}{|w_m||c_l|}}{\sum_{m=1}^{M} \frac{|w_m|}{S} \log \frac{|w_m|}{S} + \sum_{l=1}^{L} \frac{|c_l|}{S} \log \frac{|c_l|}{S}}{\log \frac{|c_l|}{S}}}$$
$$purity(\Omega, C) = \frac{1}{S} \sum_{m} \max_{l} |w_m \cap c_l| \text{ where } S = |\bigcup_{\omega \in \Omega} w$$

NMI (Normalized Mutual Information)

Data set	CHARITY	PET	FOOD	BOOKS	SPORTS
Our method	0.6723	0.5368	0.5899	0.6463	0.5251
Micro-Clustering [T. Uno+ 15]	0.6689	0.5272	0.5779	0.6020	0.5212
Louvain method [V. Blondel+ 08]	0.6083	0.6614	0.5707	0.5110	0.3213
k-means method	0.7782	0.2898	0.4008	T.O.	T.O.

 $J(\mathbf{u}, \mathbf{v})$ is a similarity between vectors. For example $J(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i=1}^{n} \min(\mathbf{u}_i, \mathbf{v}_i)}{\sum_{i=1}^{n} \max(\mathbf{u}_i, \mathbf{v}_i)} \text{ (Generalized jaccard index)}$

 \mathbf{u}, \mathbf{v} : the attribute vectors of u, v, respectively. $\mathbf{u_i}, \mathbf{v_i}$: the *i*th element of the vector \mathbf{u}, \mathbf{v} , respectively.

3. Enumerate maximal cliques from the polished graph G_w

Puri	tv	Scc	res
	i L Y		

Data set	CHARITY	PET	FOOD	BOOKS	SPORTS
Our method	1.0	0.9582	0.8953	0.7917	0.8101
Micro-Clustering [T. Uno+ 15]	0.9914	0.9482	0.8286	0.7619	0.4298
Louvain method [V. Blondel+ 08]	0.9759	0.8409	0.6688	0.5635	0.3740
k-means method	0.8989	0.3656	0.6845	T.O.	T.O.
Conclusion					

CONCIUSION

- Our method takes account of both the graph structure and their vertex attributes.
- Our method outperforms previous methods. \bullet