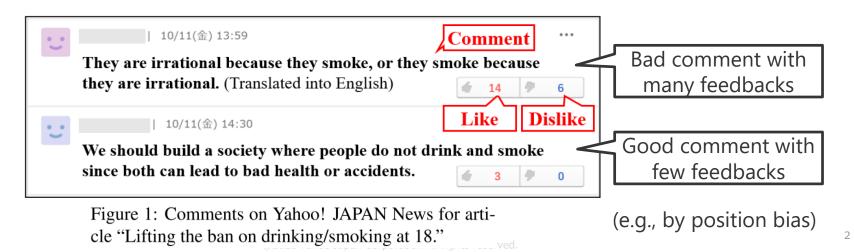
A Case Study of In-House Competition for Ranking Constructive Comments in a News Service

<u>Hayato Kobayashi¹</u>, Hiroaki Taguchi¹, Yoshimune Tabuchi¹, Chahine Koleejan¹, Ken Kobayashi¹, Soichiro Fujita², Kazuma Murao³, Takeshi Masuyama¹, Taichi Yatsuka¹, Manabu Okumura², Satoshi Sekine⁴

¹Yahoo Japan Corporation, ²Tokyo Institute of Technology, ³VISITS Technologies Inc., ⁴RIKEN

Background

- Ranking user comments is important for online news services because comment visibility directly affects the user experience.
- There have been many studies on comment ranking by user feedback.
 - (Hsu+ 2009 , Das Sarma + 2010 ; Brand&V . D. Merwe 2014 ; Wei+ 2016)
- However, user feedback does not always represent comment quality.



Ranking by Constructiveness

- Fujita et al. (2019) introduced the concept of constructiveness in argument analysis for ranking comments without biased user feedback.
 - Constructiveness has no correlation with user feedback (Like/Dislikes).

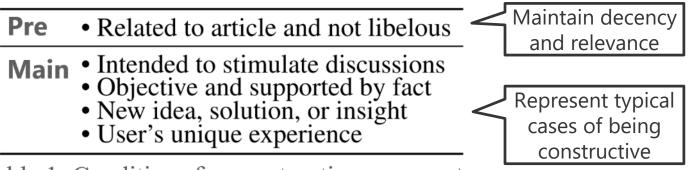


Table 1: Conditions for constructive comments.

This Work

Approach

- Take Fujita et al.'s study one step further towards practical application.
 - Key aspect: Performance improvement by in-house competition.

Contributions

- Report the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.
- Consider several ensembles of the submitted various models.
 - 0.62% improvement in NDCG against the best single model.

In-House Competition

- Related to article and not libelous Pre
- Intended to stimulate discussions Main
 - Objective and supported by fact
 New idea, solution, or insight

 - User's unique experience

Table 1: Conditions for constructive comments.

- Ranking comments based on their constructiveness scores (C-scores). -
 - C-score = a graded numeric score representing the level of constructiveness.

Dataset

- 59,120 comments (9,845 articles with about 6 comments). _
 - Including 995 long comments (with 126-400 characters). -

Evaluation

- NDCG: $\frac{1}{K} \sum_{k=1}^{K} \text{NDCG}@k$ NDCG $@k = Z_k \sum_{i=1}^{k} \frac{2^{r_i} 1}{\log_2(i+1)}$
- NDCG-L: NDCG only for the long comments (sub measure). -
 - To avoid sloppy methods that determine long comments to be constructive. -

Task

Submission Trend

- Number of submissions increased at the beginning of work (where time is more available) and on the day of the deadline.
- 8 individuals submitted:
 - 14 models during the competition period (before the deadline).
 - +4 models after the deadline.
- Total 18 models for research.

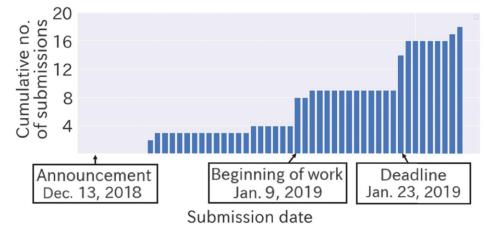


Figure 2: Cumulative number of submissions over the competition period.

Performance Increase (%) Compared to Baseline

- Many models performed better than Baseline.
- Highest performance increase was 2.73% by Model-17 for NDCG.
- Use of the leaderboard had a positive effect for participants submitting high-performance models for both measures in the latter half of the competition.

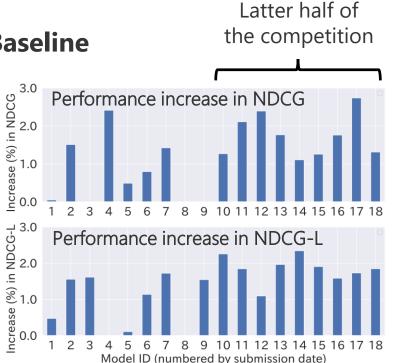


Figure 3: Increase (%) in NDCG (top) and NDCG-L (bottom) for each model compared to Baseline.

Baseline: A linear rankSVM model with features based on term-frequency vectors.

High-performance Models

- **Model-4**: Highest NDCG (before the deadline).
 - A gradient boosting model with features based on pretrained word embeddings.
- **Model-11**: Highest sum of NDCG and NDCG-L.
 - A linear rankSVM model with features based on C-score prediction (= stacking) and the distance between an article and its comment.
- Model-14: Highest NDCG-L.
 - A gradient boosting model with features based on maximal substrings and words.
- **Model-17**: Highest NDCG (after the deadline).
 - A variant of the RankNet model (BiLSTM+GCNN) with features based on subwords.

Ensemble of Submitted Models (Trial after Competition)

- Prepared 4 simple and 2 recent ensemble methods.
- Simple methods: ScoreAve, NormAve (2011), RankAve, TopkAve (2009)
- Recent methods: PostEval (2018), WeightEval (2020)

- **NormAve**: Use the average of the predicted scores of all models after normalizing the scores (Burges+ 2011).
- WeightEval: Use the weighted average of the top-k promising predictions
 (Fujita+ 2020), which is a hybrid of (continuous) majority voting and averaging.
 (The other methods are omitted due to time constraint.)

Results of Ensemble Models

- WeightEval performed the best for the main measure NDCG.
 - 0.62% improvement against the best single model.
- NormAve is the most promising for practical use (no parameter tuning).

		NDCG	NDCG-L	NDCG@3	Prec@3
	Baseline	81.63	86.74	81.09	73.30
Simple and	Model-4 Model-11 Model-14 Model-17	83.60 83.35 82.53 83.86	82.15 88.34 88.77 88.24	82.79 82.93 81.83 <u>83.27</u>	$\begin{array}{r} 73.98 \\ 73.20 \\ 72.86 \\ 72.01 \end{array}$
effective.	ScoreAve NormAve	83.85 84.33	86.66 88.41	83.20 84.01	73.40 74.11
	RankAve	83.46	88.25	82.92	73.30
Best but a little complicated	TopkAve PostEval WeightEval	84.35 84.32 84.38	$\frac{88.35}{88.64}$ 88.30	83.31 83.88 84.18	73.54 73.91 74.04

Table 2: NDCG variants (%) and precision (%) for (a part of) the submitted models and their ensembles.

Towards Practical Use

- Qualitative evaluation from the perspective of service.
 - 3 service experts ranked the comment lists created by candidate models.
 - Criterion: Which list should be provided as a service?
- Two cases:
 - Baseline vs. naive methods.
 - Baseline vs. submitted models.
 - Service preferred not to use ensemble models because it would be unreasonable to maintain different models.

Baseline vs. Naive Methods

- Feedback: Descending/ascending order of number of Likes/Dislikes.
- Latest: Descending order of comment date.
- **Length**: Descending order of comment length.
- Baseline (C-score) clearly performed better than the other methods.
- Constructiveness is useful even in human evaluation, while the previous study (Fujita+ 2019) used NDCG only.

	Average Rank
Feedback	2.61
Latest	3.42
Length Baseline (C-score)	2.20 1.77
baseline (C-scole)	1.//

Table 3: Qualitative evaluation results of Baseline and naive methods (lower ranks are better).

Baseline vs. Submitted Models

- Prepared the four high-performance single models.
 - Model-4 (GBM with word embeddings), Model-11 (rankSVM with stacking), Model-14 (GBM with maximal substrings), Model-17 (RankNet with subwords).

- Best single model (Model-17) also had the best average rank.
- Competition format is effective even in a service-level judgment.

	Average Rank
Baseline	3.86
Model-4 Model-11 Model-14 Model-17	3.64 3.63 3.41 3.11

Table 4: Qualitative evaluation results of submitted models and Baseline (lower ranks are better).

Conclusion

Summary

- Reported the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.

Discussion

- Service decision suggests that while an ensemble of different models is promising in an academic sense, it still has challenges in an industrial sense.
 - Model unification/distillation for improving maintainability and latency?

Thank you!

