Autonomous Learning of Ball Trapping in the Four-legged Robot League

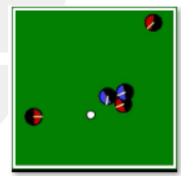
Hayato Kobayashi¹, Tsugutoyo Osaki², Eric Williams², Akira Ishino¹, Ayumi Shinohara²

¹Kyushu University, Japan ²Tohoku University, Japan

Motivation

- Passwork in the four-legged robot league
 - KeepAway Soccer [Stone et al. 2001]
 - Benchmark of good passing abilities in the simulation league
 - Passing Challenge
 - Technical challenge in this year

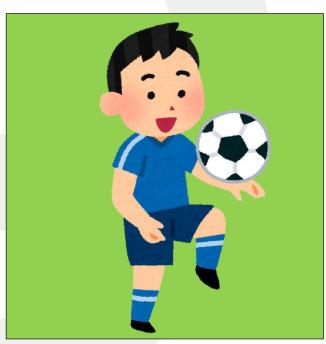
It is too difficult for dogs



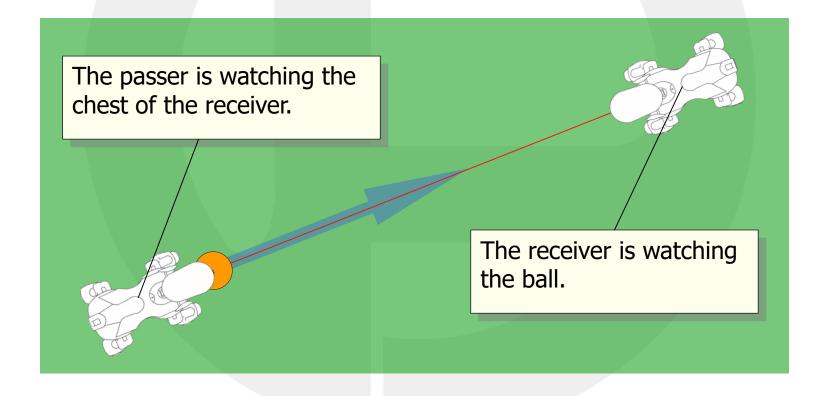
KeepAway Soccer http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/

Ball Trapping

Stop and control an oncoming ball

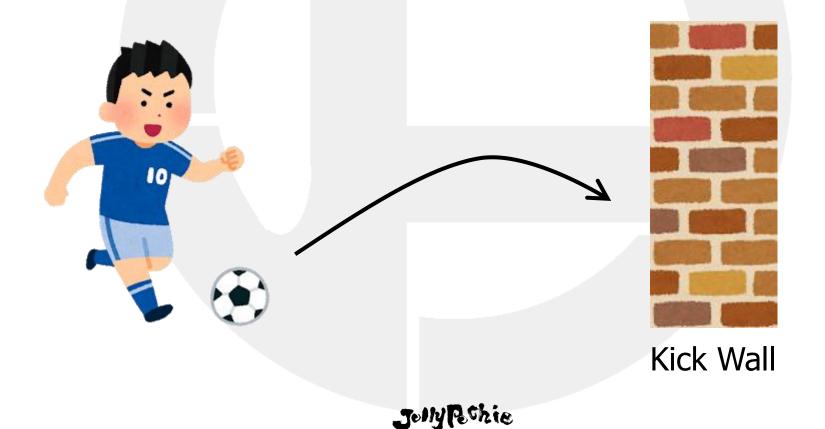


One-dimensional Model

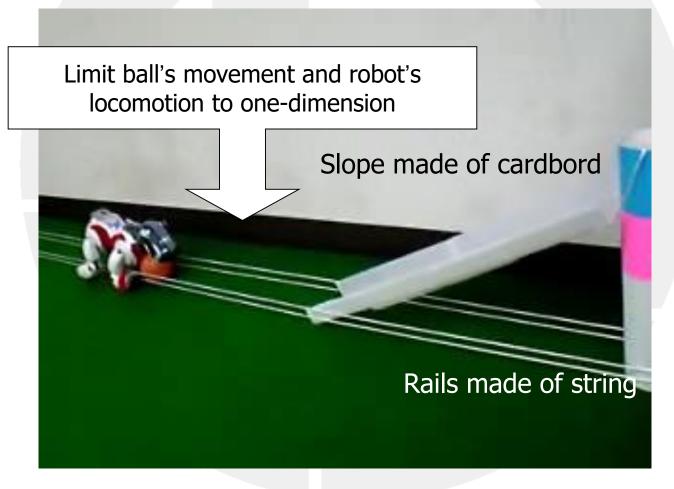


Autonomous Method

Same way as diligent humans



Training Equipment

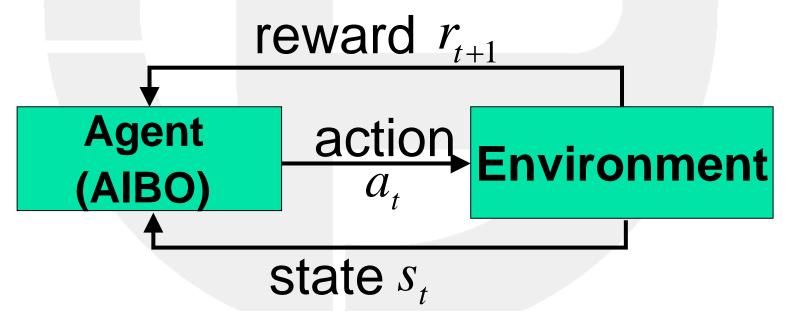


Learning Method

- **Sarsa**(λ) [Rummery and Niranjan 1994; Sutton 1996]
 - Reinforcement learning algorithm
- Tile-coding (aka CMACs [Albus 1975])
 - Linear function approximation
 - For speeding up their learning

Reinforcement Learning

 Acquire maps from state input to action output maximizing the sum of rewards



In our study, each time step $t = 0, 1, 2, \dots$ mean 0ms, 40ms, 80ms, ...

Implementation

- State $s_t = (x_t, dx_t)$
 - x_t • The distance from the robot to the ball [0,2000](mm)
 - dx_t • The difference between the current x_t and the previous x_t of one time step before.

[-200,200](mm)

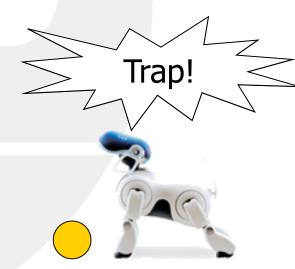
- Action a_t
 - ready • Move its head to watch the ball
 - trap• • Initiate the trapping motion

Implementation

- Reward r_{t+1}
 - Positive
 - If the ball was correctly captured between the chin and the chest after the *trap* action.
 - Negative
 - If the trap action failed, or
 - If the ball touches the chest PSD sensor before the *trap* action is performed.
 - Zero
 - Otherwise

Implementation

- Episode
 - The period from kicking the ball to receiving any reward other than zero

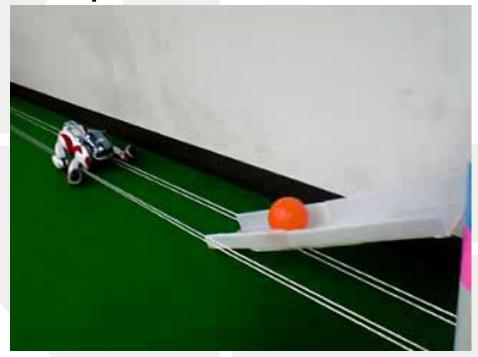


Experiments

- Using one robot
- Using two robots
 - without communication
 - with communication

Using One Robot

Earlier phase

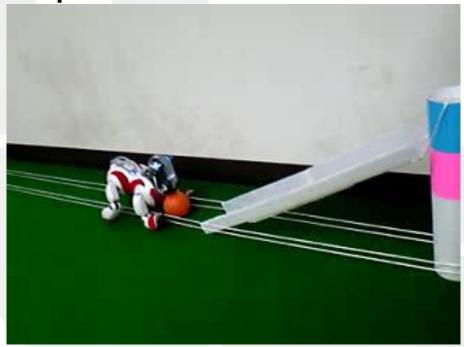


https://youtu.be/hv1sgIZLpKA

July Rohie

Using One Robot

Later phase

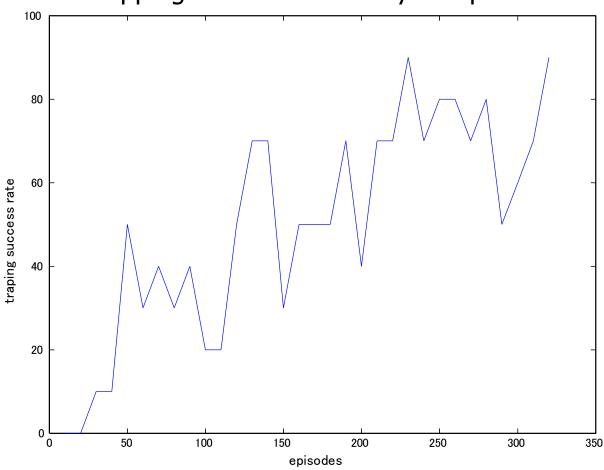


https://youtu.be/XJBIIv7wJXQ

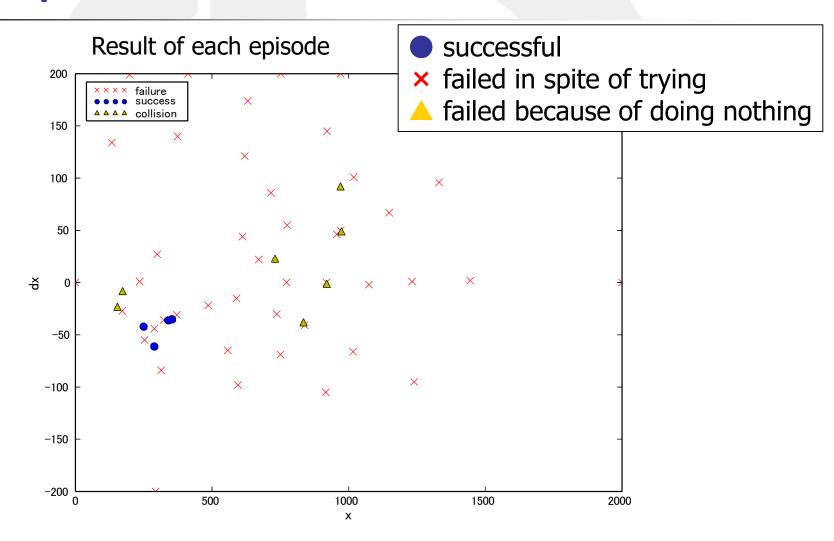
July Pohie

Result of Learning Using One Robot

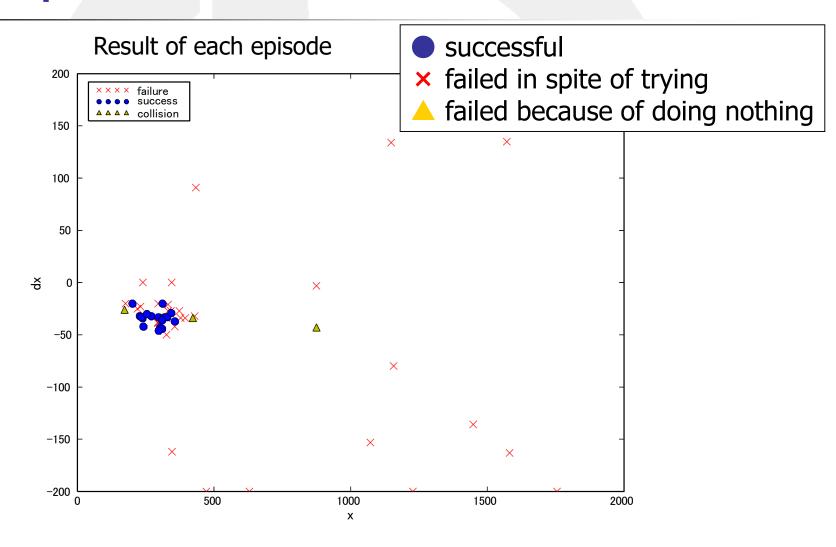
trapping success rate every 10 episodes



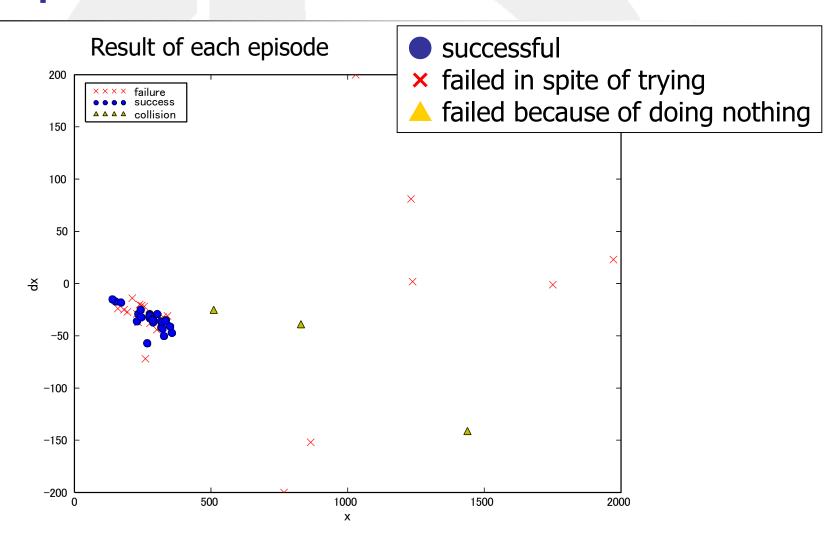
Episodes 1...50



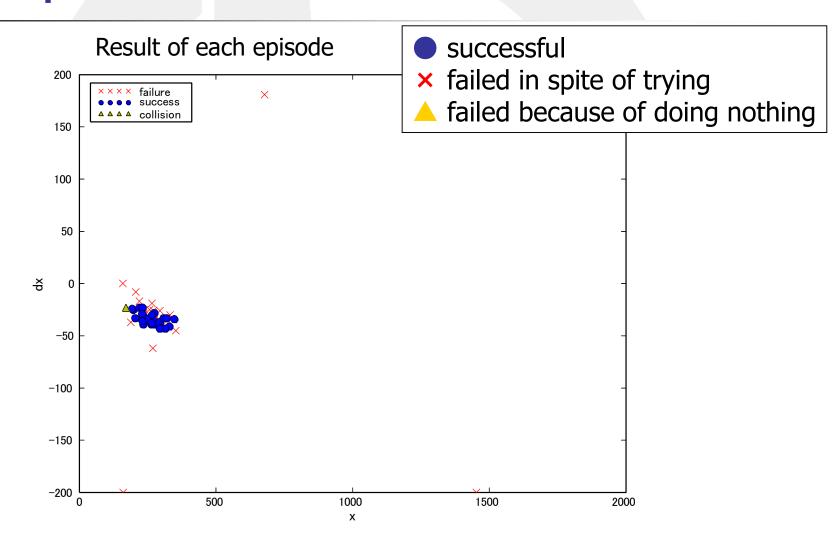
Episodes 51...100



Episodes 101...150



Episodes 151...200

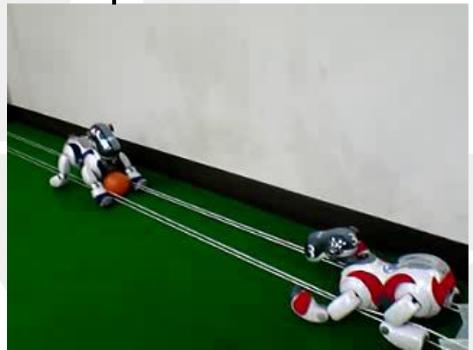


Using Two Robots

- Simply replace slope with another robot
 - Active Learner (AL)
 - Original robot
 - Same as in case of training using one robot
 - Passive Learner (PL)
 - Replaces slope
 - Does not approach the ball if the trapping failed

Using Two Robots

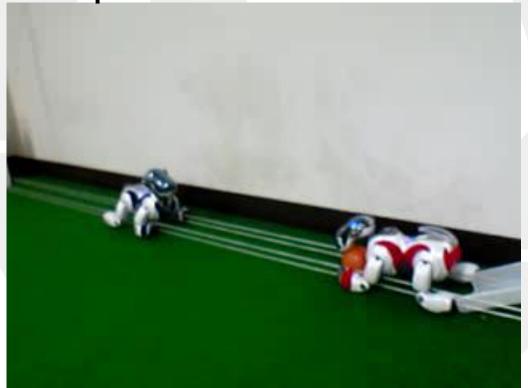
Earlier phase



https://youtu.be/sXkVYZjOzjg

Using Two Robots

Later phase

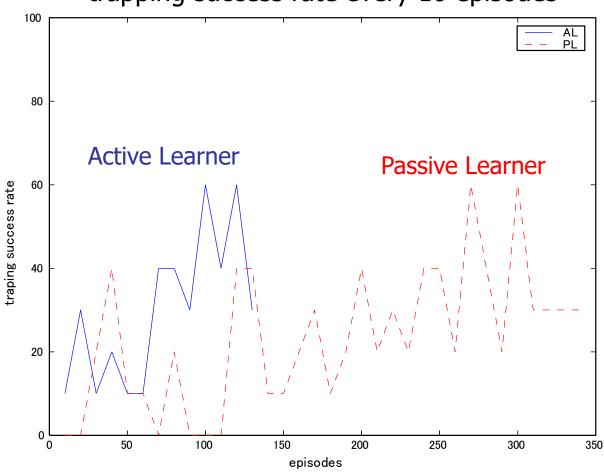


https://youtu.be/opvoyv9h-GU

July Pohie

Result of Learning Using Two Robots Without Communication

trapping success rate every 10 episodes



Problem of Using Two Robots

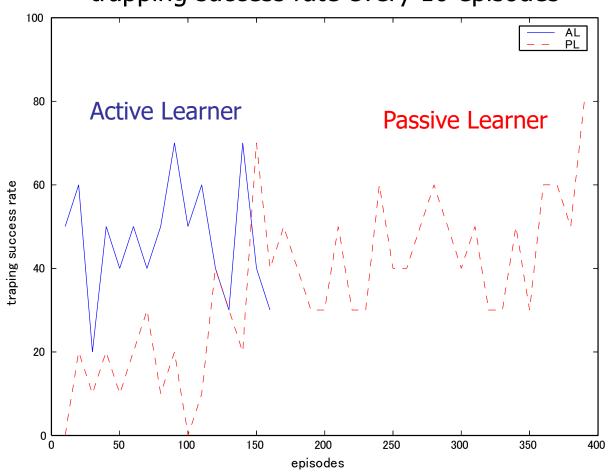
- Takes a long time to learn
 - AL can only learn when PL itself succeeds
 - Cannot learn if the ball is not returned
 - Even if we use only two ALs, the problem is not resolved
 - Just learn slowly, though simultaneously.

Solution

- Sharing their experiences
 - Their experiences include
 - Action a_t (*trap* or *ready*)
 - State variables $s_t = (x_t, dx_t)$
 - Reward r_{t+1}

Result of Learning Using Two Robots With Communication

trapping success rate every 10 episodes



Conclusion

- The goal of pass-work is achieved in one-dimension
 - learned the skills without human intervention
 - learned more quickly by exchanging experiences with each other

Future Work

- Extend trapping skills to two-dimensions
 - Layered Learning [Stone 2000]
 - Make goalies stronger
- Make robots learn passing skills simultaneously

Thank you for your attention!

Bremen is a good town!

July Pothie