Diamonds in the Rough: Generating Fluent Sentences from Early-stage Drafts for Academic Writing Assistance

Takumi Ito^{1,2}, Tatsuki Kuribayashi^{1,2}, Hayato Kobayashi^{3,4}, Ana Brassard^{4,1}, Masato Hagiwara⁵, Jun Suzuki^{1,4} and Kentaro Inui^{1,4}

1: Tohoku University, 2: Langsmith Inc., 3: Yahoo Japan Corporation, 4: RIKEN, 5: Octanove Labs LLC

The writing process

Automatic writing assistance

- insufficient fluidity
- awkward style
- collocation errors
- missing words

- grammatical errors
- spelling errors

Automatic writing assistance

- X insufficient fluidity
- X awkward style
- X collocation errors
- X missing words

✓ grammatical errors✓ spelling errors

Grammatical error correction (GEC)

	FIRST	DRAFT: "]	Mod	el have good results. "
R	Revising	"Our model sho good result in this task."	W	"Our model shows a excellent perfomance in this task."
E	XISTING S	TUDIES		
E	Editing	"Our model sho [.] good result <mark>s</mark> in th task."	w <mark>s</mark> his	"Our model shows a e xcellent perfomance in this task."
F	Proofread	ding "Our perfo <mark>r</mark>	mode manc	l shows excellent se in this task."
	FINA VERS	odel shows excellent ance in this task."		

Automatic writing assistance

Grammatical error correction (GEC)

Sentence-level revision (SentRev)

		del nuve good resulls.
OUR FOCU	S	
Revising	<i>"Our model show good result in this task."</i>	<i>"Our model shows</i> <i>a excellent perfomance</i> <i>in this task."</i>
Editing	"Our model shows good results in this task."	"Our model shows a excellent perfomance in this task."
Proofrea	ding "Our mod performan	del shows excellent nce in this task. "
	AL "Our n	nodel shows excellent

Proposed Task: Sentence-level Revision

- output: final version sentence
 - error-free
 - correctly filled-in sentence

Proposed Task: Sentence-level Revision

- correctly filled-in sentence

• issue: lack of evaluation resource

Our contributions

- Created an evaluation dataset for SentRev
 - Set of Modified Incomplete TecHnical paper sentences (SMITH)
- Analyzed the characteristics of the dataset
- Established baseline scores for SentRev

Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Our model <> results*

Our model shows competitive results

Straight-forward approach :

Experts modify collected drafts to final version

limitation:

early-stage draft sentences are not usually publicly available

Note:

We can access plenty of final version sentences

Evaluation Dataset Creation

Goal: collect pairs of draft sentence and final version

Our model <> results*

Our model shows competitive results

Straight-forward approach :

Experts modify collected drafts to final version

Our approach:

create draft sentences from final version sentences

Crowdsourcing Protocol for Creating an Evaluation Dataset

Our approach:

create draft sentences from final version sentences

Crowdsourcing Protocol for Creating an Evaluation Dataset

Our approach:

create draft sentences from final version sentences

Statistics

Dataset	size	w/<*>	w/change	Levenshtein distance
Lang-8	2.1M	-	42%	3.5
AESW	1.2M	-	39%	4.8
JFLEG	1.5K	-	86%	12.4
SMITH	10K	33%	99%	47.0

w/<*>: percentage of source sentences with <*>

w/change: percentage where the source and target sentences differ

- collected 10,804 pairs
- SMITH simulates significant editing
- Larger Levenshtein distance ⇒ more drastic editing

- draft: *I research the rate of workable SQL <*> at the generated result.*
- final: We study the percentage of executable SQL queries in the generated results.
- draft: For <*>, we used Adam using weight decay and gradient clipping.
- final: We used Adam with a weight decay and gradient clipping for optimization.
- draft: In the model aechitecture, as shown in Figure 1, it is based an AE and GAN.
- final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

(1) Wording problems

- draft: *I research the rate of workable SQL <*> at the generated result.*
- final: We study the percentage of executable SQL queries in the generated results.
- draft: For <*>, we used Adam using weight decay and gradient clipping.
- final: We used Adam with a weight decay and gradient clipping for optimization.
- draft: In the model aechitecture, as shown in Figure 1, it is based an AE and *GAN*.
- final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

(1) Wording problems

- draft: I research the rate of workable SQL <*> at the generated result.
 final: We study the percentage of executable SQL queries in the generated results.
- draft: *For* <*>, *we used Adam using weight decay and gradient clipping.*
- final: We used Adam with a weight decay and gradient clipping for optimization.
- **draft**: *In the model aechitecture, as shown in Figure 1 , it is based an AE and GAN*.
- final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

(2) Information gaps

- draft: *I research the rate of workable SQL <*> at the generated result.*
- final: We study the percentage of executable SQL queries in the generated results.
- draft: For <*>, we used Adam using weight decay and gradient clipping.
- final: We used Adam with a weight decay and gradient clipping for optimization.
- draft: In the model aechitecture, as shown in Figure 1, it is based an AE and *GAN*.
- final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

(2) Information gaps

- **draft**: *I research the rate of workable SQL* <*> *at the generated result.*
- final: We study the percentage of executable SQL queries in the generated results.

draft: For <*>, we used Adam using weight decay and gradient clipping.

- final: We used Adam with a weight decay and gradient clipping for optimization.
- draft: In the model aechitecture, as shown in Figure 1, it is based an AE and *GAN*.
- final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

(3) Spelling and grammatical errors

- draft: I research the rate of workable SQL < *> at the generated result.
- final: We study the percentage of executable SQL queries in the generated results.
- draft: For <*>, we used Adam using weight decay and gradient clipping.
- final: We used Adam with a weight decay and gradient clipping for optimization.
- draft: In the model aechitecture, as shown in Figure 1, it is based an AE and GAN.
 final: The model architecture, as illustrated in figure 1, is based on the AE and GAN.

Experiments

many study <*> in grammar error correction draft

A great deal of research has been carried out in grammar error correction.

final version

- built baseline revision models (draft ⇒ final version)
 - training data: generated synthetic data with noising methods
- evaluated the performance on SMITH
 - using various reference and reference-less evaluation metrics

Noising and Denoising

Noising: automatically generate drafts from the final versions

draft

final version

Noising and Denoising

Denoising: generate final versions from the drafts

2019/10/29

INLG2019 26

heuristic noising rules:

randomly deleting, replacing with <*> or common terms, and swapping

Baseline models

many study <*> in grammar error correction draft

A great deal of research has been carried out in grammar error correction.

final version

- Noising and Denoising models
 - Heuristic noising and denoising model (H-ND)
 - Rule-based Heuristic noising (e.g., random token replacing)
 - Enc-Dec noising and denoising model (ED-ND)
 - Rule-based Heuristic noising

+ trained error generation models (e.g., grammatical error generation)

• SOTA GEC model [Zhao+ 19]

Experiment settings

- Noising and Denoising Model architecture
 - Transformer [Vaswani+ 17]
 - Optimizer: Adam with α = 0.0005, β_1 = 0.9, β_2 = 0.98, ϵ = 10 e^{-8}
- Evaluation metrics
 - BLEU
 - ROUGE-L
 - F0.5
 - BERTscore [Zhang+ 19]
 - Grammaticality score [Napoles+ 16]: 1 (#errors in sent /#tokens in sent)
 - Perplexity (PPL): 5-gram LM trained on ACL Anthology papers

Results

Model	BLEU	ROUGE-L	BERT-P	BERT-R	BERT-F	Р	R	$F_{0.5}$	Gramm.	PPL
Draft X	9.8	46.8	75.9	78.2	77.0	-	-	_	92.9	1454
H-ND	8.2	45.0	77.0	76.1	76.5	5.4	2.9	4.6	94.1	406
ED-ND	15.4	51.1	80.9	80.0	80.4	21.8	12.8	19.2	96.3	236
GEC	11.9	49.0	80.8	79.1	79.9	22.2	6.2	14.6	96.7	414
Reference Y	-	_	_	-	_	-	-	-	96.5	147

- ED-ND model outperforms the other models
 - the HD-ND noising methods induced noise closer to real-world drafts
- SOTA GEC model showed higher precision but low recall
 - the GEC model is conservative

Examples of the baseline models' output

Draft	<i>Yhe input and output <*> are one - hot encoding of the center word and the context word , <*> .</i>
H-ND	<i>The input and output are one - hot encoding of the center word and the context word , respectively .</i>
ED-ND	<i>The input and output layers are one - hot encoding of the center word and the context word , respectively .</i>
GEC	<i>Yhe input and output are one - hot encoding of the center word and the context word , .</i>
Reference	<i>The input and output layers are center word and context word one - hot encodings , respectively .</i>

ED-ND models replaced the **<*>** token with plausible words

Analysis: error types of drafts in SMITH & training data

Similar error type distribution

Conclusions

- proposed the SentRev task
 - Input: a incomplete, rough draft sentence
 - Output: a more fluent, complete sentence in the academic domain.
- created the SMITH dataset with crowdsourcing for development and evaluation of this task
 - available at https://github.com/taku-ito/INLG2019_SentRev
- established baseline performance with a synthetic training dataset
 - training dataset available at the same link as above

Criteria for evaluating crowdworkers

Criteria	Judgment
Working time is too short (< 2 minutes)	Reject
All answers are too short (< 4 words)	Reject
No answer ends with "." or "?"	Reject
Contain identical answers	Reject
Some answers have Japanese words	Reject
No answer is recognized as English	Reject
Some answers are too short (< 4 words)	-2 points
Some answers use fewer than 4 kinds of	-2 points
words	
Too close to automatic translation (20	-0.5 points/ans
<= L.D. <= 30)	
Too close to automatic translation (10	-1.5 points/ans
<= L.D. $<=$ 20)	
Too close to automatic translation (L.D.	Reject
<= 10)	
All answers end with "." or "?"	+1 points
Some answers have <*>	+1 points
All answers are recognized as English	+1 points

 filtered the crowdworkers' answers using the criteria

 accepted answers with score 0 or higher

Comparison of the top 10 frequent errors observed in the 3 datasets

SMITH included more "OTHER" than the other two datasets

Examples of "OTHER" in SMITH

Draft: the best models are very effective on the that they are far greater than human.

Reference: The best models are very effective in the local context condition where they significantly outperform humans.

SMITH emphasizes "completion-type" task setting for writing assistance.