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+ For robots to function in the real world,
learning abilities are essential

+ To adapt to unknown environments

» Legged robots must learn many basic sKkills

x E.g., walking, running, pushing, pulling, jumping,
catching, kicking, hitting, ...

Learning of ball passing skills by AIBO
= @@ 4
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RoboCup soccer

Standard platform league
(four-legged robot league)

Simulation league https://www.robocup.org/ Humanoid league
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¢ Human intervention
¢ Time consuming
¢ Motor failure

Ex. Learning process of goal saving skills

Initial phase
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https://youtu.be/9oHA-GH9JT8
https://youtu.be/3Pluuk20xqs

» Autonomous learning method of passing skills
* For reducing human intervention

+x Application of the idea of autonomous learning of
ball trapping skills [Kobayashi et al. 2006]

» Hybrid method for trial reduction
+ For reducing all costs of each trial

+x Improvement of thinning-out [Kobayashi et al. 2007]
utilizing surrogate functions
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» Accurate shooting motions that move and
stop a ball to a specific area

+ Neither too strong nor too weak

» Shooting motions

* Generated by key-frames (seq. of joint angles)

key-frame (1) key -frame (2) key-frame (3)

Ex. Forward shooting motion pushing a ball with its chest
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Specific area Hazard Deluxe Putting Mat©]JEF World Of Golf

Related work
* Learning of walking skills [Kim and Uther 2003][Kohl and Stone 2004]
[Hornby et al. 2005][Saggar et al. 2007]
* Learning of ball acquiring skills [Fidelman and Stone 2004 ][Fidelman and Stone 2007]
* Learning of ball trapping skills [Kobayashi et al. 2007]
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» Maximization of the following score function

Each key-frame is indicated by 8 joint ang_les
(= head 2 + fore leg 3 + rear leg 3) using symmetry

5
« Score function f: X=R on XS R8K  (k=#key-frames)

« (Generate a motion from x& X
+x Make the robot kick the ball using the motion

+ Return the distance to the kicked ball
» Using the median of 5 evaluations

Robot 1%‘ =
% Score is zero for Specific
~'a  abouncingball area
)\ . Score Ball
- r\ A
R il
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» Heuristic algorithms that are independent
of problems
x Genetic Algorithm
x Simulated Annealing
* Policy Gradient
+ Hill Climbing

X uua

+ We choose Genetic Algorithm (GA)
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Idea : Make the resampling process of new candidates more efficient
using meta-heuristics instead of random perturbation

Thinning-out [Kobayashi et al. 2007] Our hybrid method combining

To skip over the evaluation of unpromising thinning-out and surrogate functions
candidates selected by meta-heuristics

Candidate <1,:- Random Candidate
XEX perturbation XEX

i.e. mutation of GA

@ (unpromlslng)

(unpromlslng)
@ (promising) @ (promlsm

w w Surrogate func.
f(x) f(x) a(x)

approx. of f(x)
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+ To reduce unpromising trials
*x The same concept as “pruning” in search trees

+ Based on the assumption
+ The score function is g-Lipschitz continuous

» Memory-based learning
* Memory-based fitness evaluation GA [Sano et al. 2000]
* Locally weighted regression [Schaal and Atkeson 1994]

+ Acceleration by function approximation [Ratle 1998]

We can easily combine the other methods with thinning-out
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Thinning-out condition

FO) +9(d (X%, X)) < T(%) | Fscore runeion,

The upper(ound of the score range of x

g-Lipschitz continuous
f(x.)< f(x)) d: Metric of X

f(x) 1

Best score f(x,) ‘)(_b (Best point so far)

[
X, (Nearest neighbor)
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Thinning-out condition
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Thinning-out condition

X: Search space
JX ) + 9 (d (XN X )) < f (Xb) f: Score function,
The upper(ound of the score range of x)) g-Lipschitz continuous

f (X ) < f (Xb d: Metric of X

f(x) | |
Best score f(xy) [ X, (Best point so far)
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Thinning-out condition
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Thinning-out condition

T(X)+9(d (X, X)) < T(x)

The upperpound of the score range of x
(=1 00) < T(x))

X: Search space

f: Score function,
g-Lipschitz continuous

d: Metric of X

) ]
_ oty 2 o (estpeiitee )
X, (Nearest neighbor)
1) +9(d(x )
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Score range
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Thinning-out condition

T(X)+9(d (X, X)) < T(x)

The upperpound of the score range of x
(=1 00) < T(x))

f(x) T

Evaluated | Best score f(x)

X: Search space

f: Score function,
g-Lipschitz continuous

d: Metric of X

X (Best point so far
@° ( p )

X, (Nearest neighbor)
1) +9(d (k%)
(
@
Score range
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pt Lipschitz tunctions
» Max Gradient method (MG)
+ Using the max gradient in the history
+x Naive method

+ Thin-out correctly

» Gathering Differences method (GD)

x Using the weighted averag)g of gradients in the
history e

+« Heuristic method

* Thin-out a lot r/
x Useful in high dimensio
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» Function interpolation method [Matheron 1963]
+ Initially developed in geostatistics

+x Recently used as surrogate functions

» Ordinary kriging

+x Most common type of kriging

* Related studies used as surrogate functions

*

*

*

Martin and Simpson 2003]
Jouhaud et al. 2007]
Glaz et al. 2008]
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Interpolated value of X* is represented by
f(x') = Z W (x) e

f(x;): observed score ofx eX

w;: weight of f(X;)

The weights for x* are calculated by minimizing
the error variance

V, =Var| f(x*)— f(x") |

SU.bj ectto Z W Given by the unbiased condition

and second-order stationariti
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(d) Rosenbrock (e) Ridge (f) Ackley

The shape of test functions in 2 dimensio

Dependency of variables

(Sano et al. (2000) also utilized these test functions for evaluating distributed GA) |
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Trial rates and error rates in 100 candidates (lower = better)
LREGVIA Trial rate (%) irror rate (% |Trial rate (%) Zrror rate (%)
Rastrigin 54.20 0.80 38.67 0.40
Schwefel 62.84 0.87 42.63 0.17
Griewank 48.24 /.09 35.81 0.00

Rosenbrock 54.75 0.06 39.34 0.00

Ridge 55.42 0.04 38.58 0.00

Ackley 60.37 0.92 43.26 0.05

(Each value is the average over 100 experiments)

Trial rate — #(tried can(_jldates) <100 SGA: Simple GA
# (all candidates) GAT: SGA with Thinning-out
Error rate — #(wrongly thinned out candidates) 100 GATS: GAT with Surrogate func. /

# (thinned out candidates)
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17472 e 3326 e 2265
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21 21 21

(Each value is the average over 100 experiments)

SGA: Simple GA
GAT: SGA with Thinning-out
GATS: GAT with Surrogate func.
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Learning of Passing
- Q
» Initial motion: Forward chest shooting
x Search space: 48 dim. (=8 joints X 6 key-frames)
*x Shooting distance: 1500 mm
» Distance to the objective: 800 mm
+ Min. of passing distances in the passing challenge

In1t1al phase of the experiment

Passing challenge in RoboCup

Passing
dlstance

?’i
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https://youtu.be/QKuRUwwTUbo

800 . . . .
=0 GATS |(Proposed hybrid method)
700 || =% GAT (Previous method)
BooE SGA (Normal method)
— 600
§
-+~
8 500
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L 400 |
20
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o 30T
8
“2 200 /A S
g & SGA: Simple GA
100 | & GAT: SGA with Thinning-out
s¢ GATS: GAT with Surrogate func.
% = 10 20 30 20 50

Number of Trials
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Later phase of the experiment
(accuracy of about 3 cm)
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https://youtu.be/WiDadAzfasg
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» Autonomous learning of ball passing skills

» Hybrid method for trial reduction combining
thinning-out and surrogate functions

+ The first application of thinning-out in the real
world

Future work
+ Extension to two-dimensions
» Adaptation to arbitrary distances

IAS-10 in Baden-Baden, Germany



2008/7/23 IAS-10 in Baden-Baden, Germany



