Semi-Supervised Extractive Question Summarization Using Question-Answer Pairs

Kazuya Machida*[†], <u>Tatsuya Ishigaki*</u>[†], Hayato Kobayashi[‡], Hiroya Takamura^{†§}, Manabu Okumura[†] [†]Tokyo Institute of Technology / [‡]Yahoo Japan Corporation / [§]AIST *<u>equal contribution</u>

1. Introduction

Task: Extractive Question Summarization

Input : Multi-sentence question

Output : Extracted Single-sentence summary

The first sentence tends to be displayed as a headline on current CQAs, but it is not necessarily the most important one

Question: Hello, I have an AU's iPhone 5S	Answer: The iPhone's initial setup		
Hello, I have an AU iPhone 5S, but it still has	requires a SIM card and a PC that		
the default settings Default Headline Sent .	can use the Internet. If you don't		
I have no Wi-Fi at home, so I cannot set it up	have a PC, try connecting to Wi-Fi		
Is there any way to do the iPhone's initial	at a convenience store or other		
setup without Wi-Fi? Actual Important Sent.	location. If you don't have a SIM		
If there is, please tell me:)	card, borrow someone else's.		

2. Framework

Our Approach: Semi-Supervised Learning

- Neural extractive summarizer requires a large labeled data, but only few labeled data exists for this task.
- We can obtain a lot of question-answer pairs.
- \rightarrow We examine how to use such unlabeled paired data.

Contributions:

- 1. We address extractive question summarization with QA pairs as a case study of a semi-supervised setting with unlabeled paired data
- Our experiments showed that multi-task training with an appropriate sampling method achieves better performance.
 The data and code used in this paper are publicly available.

Our framework is composed of two modules:

1. Sentence Extraction Model (SEM)

Word-level and sentence-level LSTMs convert sentences S_i into fixed-length vectors h_i . These vectors are passed on to a softmax layer to output the score $f_{ext}(s_i)$.

2. Answer Generation Model (AGM)

LSTM-based decoder with an attention module generates an answer. We treat the averaged attention weight as score for each sentence $f_{gen}(s_i)$.

Training loss Important score for s_i: * λ, к: hyperparameters

 $\lambda L_{\text{ext}} + (1 - \lambda) L_{\text{gen}}$ $\kappa f_{\text{ext}}(s_i) + (1 - \kappa) f_{\text{gen}}(s_i)$

3. Experiment	4. Results	
Datasets:	Accuracy = correctly selected sentences $/$ total sentences.	

- . <u>Label</u>: Dataset with <u>manually annotated labels</u> (775 question)
 - We used a crowdsourcing to annotate the sentences.
- 2. <u>Pair</u>: Dataset with question-answer pairs (100K QA pairs)
- 3. <u>Pseudo</u>: Dataset with <u>pseudo labels</u> (2.5M sentences) (see another poster by us [Ishigaki+,ECIR2020]!) Compared Models:
 - Unsupervised Models
 - Lead : Simply selects the initial sentence.
 - Tfldf : Selects the sentence that has the highest Tf-Idf to the whole input.
 - SimEmb: Selects the sentence that has minimal
 - Word Movers' Distance to the whole input.
 - LexRank: A graph-based method for sentence selection.
 - Models with Label and/or Pair
 - Ext: Uses only SEM
 - Gen: Uses only AGM
 - Sep: Trains SEM and AGM separately and combine them.
 - Pre: Trains AGM first then fine-tune SEM.
 - Multi: Jointly trains AGM and SEM.
 - MultiOver: Same as Multi but Label data is oversampled.
 - MultiUnder: Same as Multi but Pair data is undersampled.
 <u>Models with Label, Pair and/or Pseudo</u>
 ExtDist: Variant of Ext but trained on Pseudo data.
 SepDist: Variant of Sep but trained on Pseudo data.
 PreDist: Variant of Pre but trained on Pseudo data.
 MultiDist: Variant of Multi (w/o sampling) but trained on Pseudo data.

* we do not use precision, recall or ROUGE since the task is a simple single-sentence extraction.

	Label	Pair	Pseudo	Acc.
Lead	-	-	-	.690
TfIdf	_	-	_	$\overline{.237}$
SimEmb	_	-	_	.472
LexRank	_	-	_	.587
Ext	\checkmark	-	-	.813
Gen	-	\checkmark	-	.649
Sep		\checkmark	-	.828
Pre	\checkmark	\checkmark	-	.788
Multi	\checkmark	\checkmark	-	.770
MultiOver	\checkmark	\checkmark	_	.833
MultiUnder	\checkmark	\checkmark	_	.857
ExtDist	\checkmark	-	\checkmark	.838
SepDist	\checkmark	\checkmark	\checkmark	.855
PreDist	\checkmark	\checkmark	\checkmark	.834
MultiDist	\checkmark	\checkmark	\checkmark	<u>.875</u>

- Unsupervised models do not perform well for this task.
- Multi performs well if we use an appropriate sampling.

 → <u>Reducing data imbalance is a key factor</u> to obtain a good performance of Multi.

 MultiDist performs the best

 → since using Pseudo data can solve the data imbalance problem by simply increasing data size.

5. Conclusion

- We proposed a framework for extractive question summarization with a semi-supervised setting.
- We found Multi-task leaning performs well if we use an appropriate sampling method.
- For future work, we will apply our framework to other tasks with similar structures, such as news articles with comments.
- The data is publicly available: http://lr-www.pi.titech.ac.jp/~ishigaki/chiebukuro/

