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Condensed headline generation with encoder-decoder model
Recent automatic summarization systems depend heavily on machine
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Step 2. Generate pseudo headlines o
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We run the baseline model to generate pseudo condensed headlines
headlines from the headlines without condensed ones.
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Step 3. Train proposed model
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» Baseline method & Results Baseline 0.571
* Pre-training method [Dai and Le, NIPS 2015] Proposed method significantly Pre-Training(w/o attention weights) 0.520
» Proposed method (with 600K unlabeled headlines) overcame baseline method. Pre-Training(all weights) 0.503
(p<0.05) Proposed (600K) 0.574
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€ Discussion

« Known problem in self-training

Too much unlabeled training examples generated from an initial model overwhelms the labeled examples (right figure). This implies that if
we could filter out the inferior training examples and choose only good training examples, we could improve the accuracy.

« Consideration of news description

Human editors carefully read the body of articles as well as their headlines in order to make their condensed headlines, and therefore
information written in the body should also be considered to generate better condensed headlines.
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