Incorporating Topic Sentence on Neural News Headline Generation

Jan **Wira** Gotama Putra¹,

Hayato Kobayashi^{2,3},

Nobuyuki Shimizu²

³RIKEN AIP

¹Tokyo Institute of Technology

²Yahoo Japan Corporation

gotama.w.aa@m.titech.ac.jp {hakobaya, nobushim}@yahoo-corp.jp

*) Research was done when the first author was an intern (summer 2017) at Yahoo! Japan

Automatic Headline Generation

• Given a news document, we want to generate a corresponding headline

• Automatic headline generation system is used by news editor as a supporting tool

- Single document summarization
 - Extractive approach (Zajic et al., 2004); Colmenares et al., 2015)
 - Abstractive approach (Banko, et al., 2000; Rush et al. 2015)

LIFESTYLE Traditional arts live through kids BY KIT NAGAMURA CONTRIBUTING EDITOR PRINT SHARE MAR 4, 2018 ARTICLE HISTORY

Nurturing respect for cultural traditions is a daunting challenge these days, when kids are glued to cellphones and game apps. So what does a country with centuries of carefully polished artistry do to preserve its heritage? Drop a curtain on the whole show? Not in Tokyo.

For the past decade, the Tokyo Metropolitan Government and Arts Council Tokyo have teamed up with the Geidankyo (Japan Council of

https://www.japantimes.co.jp/life/2018/03/04/lifestyle/tr aditional-arts-live-kids/#.WqFf8ZOuxsM

. . .

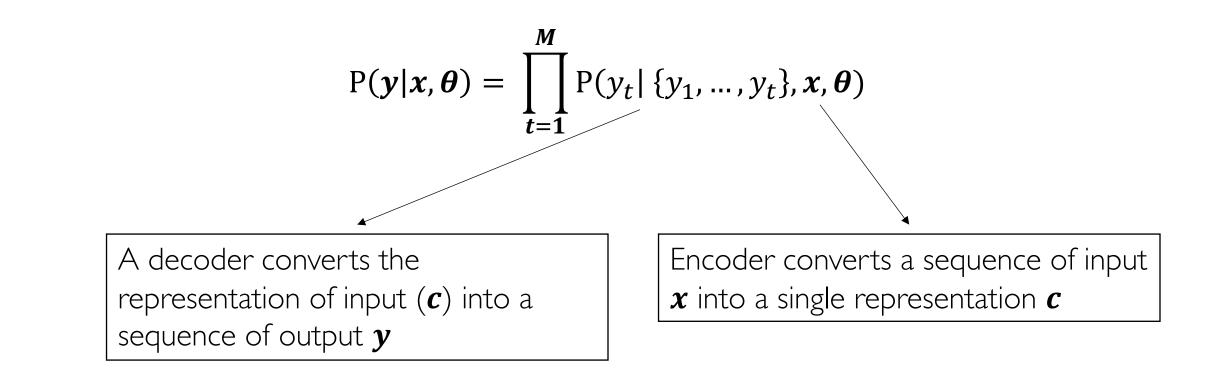
Abstractive Headline Generation

• Abstractive approach recently motivated by the success of neural machine translation systems (sequence to sequence) (Sutskever et al., 2014)

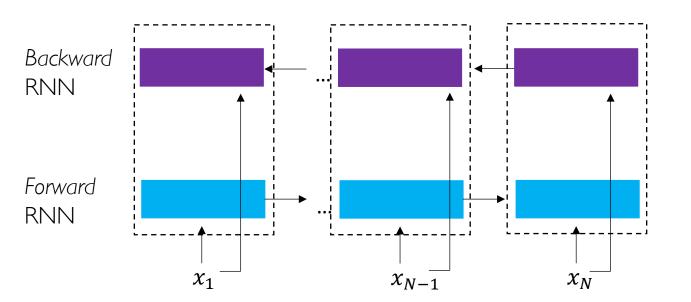
- Formalization
 - Given a sequence of N input words (source documents) $x = x_1, x_2, ..., x_N$
 - The task is to find a sequence of M output words (summary/headline) $y = y_1, y_2, ..., y_M; M < N$
 - It means we are modeling the conditional probability of input—output pair

summary =
$$\underset{y}{\operatorname{arg max}} P(y|x, \theta)$$

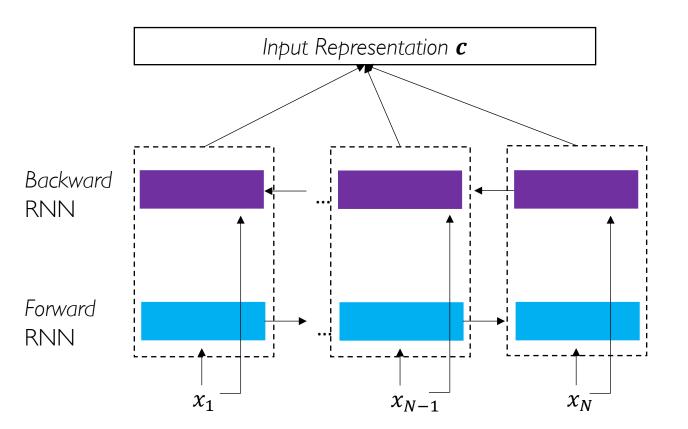
Factoring the Objective



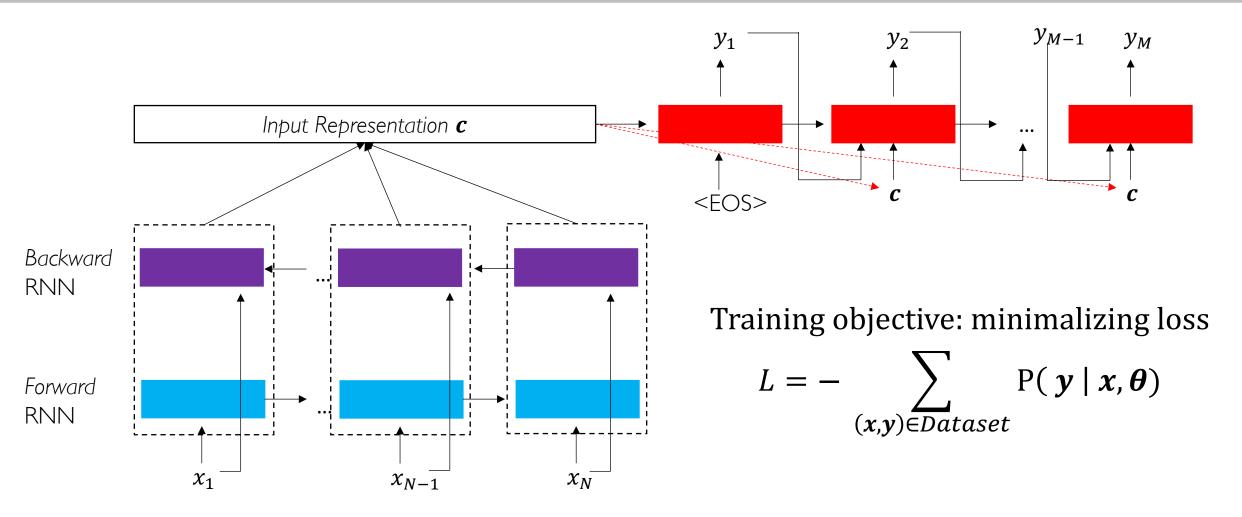
Encoder – Decoder Model



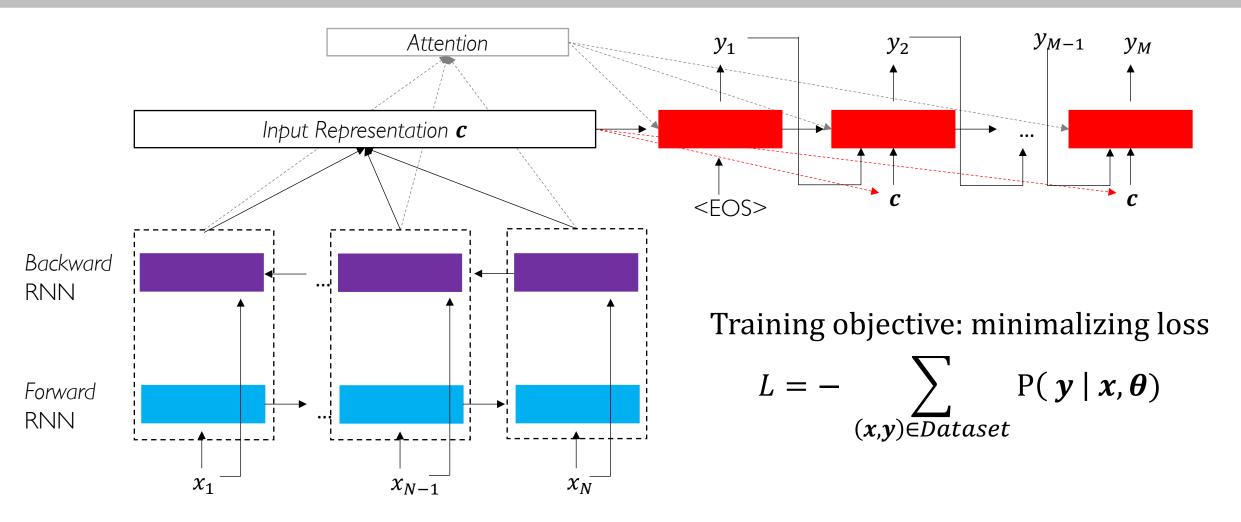
Encoder – Decoder Model



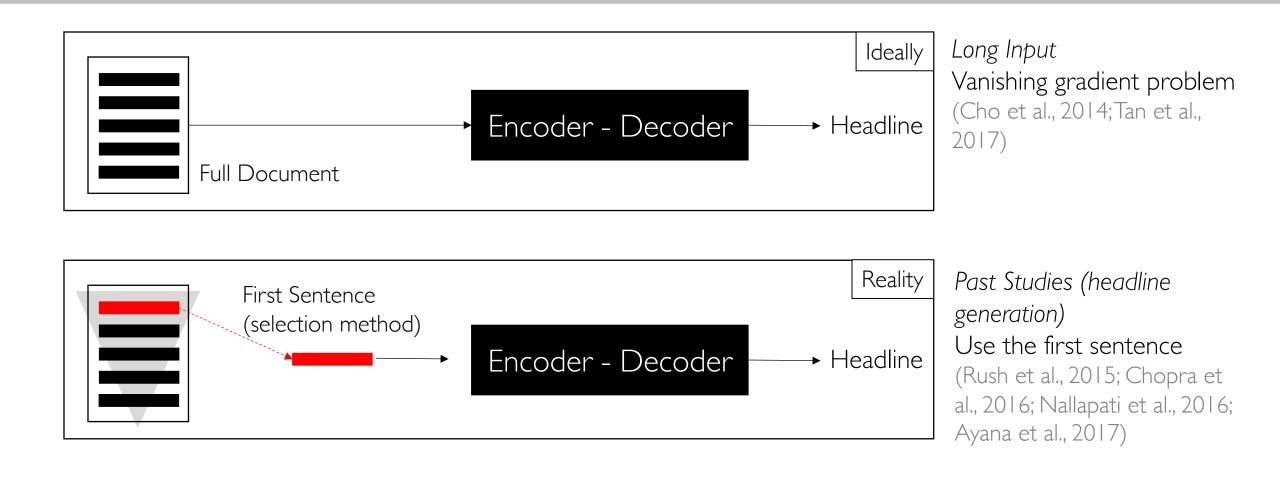
Encoder – Decoder Model



Encoder – Decoder Model with Attention



Related Work



Problems

- The first sentence might not be effective, as the information in a text is distributed across sentences (Alfonseca et al., 2013)
- Using long input may degrade the performance of encoder-decoder (Cho et al., 2014; Tan et al., 2017)

• Previous studies did not consider 5WIH (what, who, when, where, whom, how) information when analyzing news (Wang, 2012).

• How to consider inverse pyramid structure of news (organization structure)

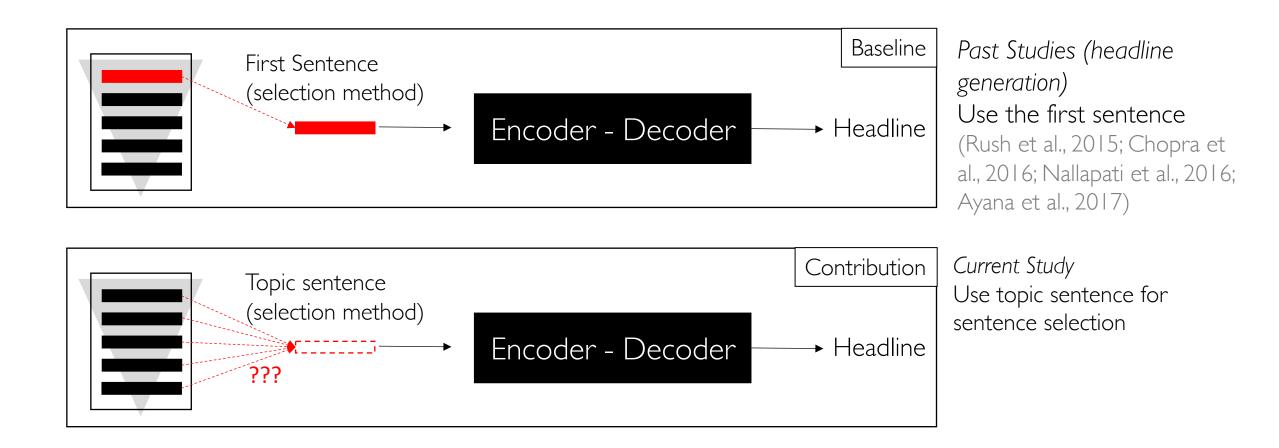
wiragotama.github.io

Proposal (contribution)

- Using topic sentence instead of/in addition to the first sentence Proposal
- Topic sentence (Wang, 2012) contains key information of news; Consider 5WIH it has the <subject, verb, object> elements and at least one (indirectly) subordinate element time or location (factual information).
 - Time = DATE and TIME (NE tag)
 - Location = GPE and LOC (NE tag)
- We extract only one topic sentence from news (the earliest sentence satisfying the rules)

Inverse Pyramid Structure + Short Input

Proposal (contribution)



Hypothesis

• We hypothesized that topic sentence is likely to provide a better generalization for the encoder-decoder than using the first sentence

• Generalization means allowing the model to predict the headline of the unseen data in a better way

• Topic sentence ≠ statistical ranking techniques (SRT); SRT considers surface information without considering factual information

Experimental Questions

I. Is the topic sentence **more useful** than the first sentence for headline generation?

2. Is the topic sentence **helpful in addition** to the first sentence for headline generation?

Experimental Setting

- We train the encoder—decoder model using three variants of input
 - First sentence (OF)
 - Topic sentence (OT)
 - Both first and topic sentence (OTF)
- We extract only one topic sentence (the earliest sentence satisfying the rules)

and headline (pair)

- We use the seq2seq implementation of OpenNMT (Klein, et al; 2017)
 - Encoder is 2-layer bidirectional LSTM RNN (500 hidden units)
 - Decoder is 2-layer LSTM RNN (500 hidden units)
 - Global attention mechanism and dropout (0.3) are used

• We used Gigaword dataset (10M documents)

Data	# docs	Found-I	Found-2-*	Not found
Train (~90%)	2,755K	2,023K (73.43%)	580K (21.06%)	I52K (5.54%)
Valid (~5%)	I 39K	101K (72.76%)	29K (21.58%)	7K (5.69%)
Test (~5%)	I 34,K	98K (72.91%)	28K (21.19%)	8K (5.90%)

- Found-I : Topic sentence is found as the first sentence of the text
- Found-2 : Topic sentence is found as the second or later sentence of the text
- Not found : Topic sentence is not found in the text

Performance

	Test Set											
Model	Торіс			First			First and Topic					
	R-I	R-2	R-L	Copy rate	R-I	R-2	R-L	Copy rate	R-I	R-2	R-L	Copy rate
OF	29.45	12.06	26.97	0.72	40.83	20.32	37.97	0.81	23.26	7.90	20.89	0.69
OT	33.73	14.37	30.77	0.71	40.71	19.68	37.76	0.80	26.69	8.98	23.69	0.71
OTF	32.00	13.03	29.11	0.76	41.47	20.49	38.46	0.83	26.49	8.91	23.45	0.75

- OF : trained using (first sentence headline)
- *OT* : trained using (topic sentence headline)
- OTF : trained using (both topic+ first sentences headline pair)
- R : ROUGE

Output Example

- Input: for american consumers, the prospect of falling prices sure sounds like a good thing but a prolonged and widespread decline, with everything from real-estate values to income collapsing, would spell disaster for the u.s. economy.
- **Reference headline:** falling prices stagnant employment numbers have economists worrying about deflation

- OF Prediction: u.s. consumer confidence drops to new high
- **OT Prediction:** u.s. consumer prices fall **#.#** percent in may
- **OTF Prediction:** u.s. consumer prices fall for first time since ####

Additional Test

Model	Training data	ROUGE			
Tiodei	Training data	R-I	R-2	R-L	
OF		28.38	13.00	26.27	
OT	2.7 M docs (Rush et al., 2015 + additional filter)	28.77	12.69	26.40	
OTF		29.37	13.13	27.08	
ABS+		29.78	11.89	26.97	
words-lvt2k-1sent	3.7 M docs (Rush et al., 2015)	32.67	15.59	30.64	
OpenNMT bechmark*		33.13	16.09	31.00	
RAS-Elman		33.78	15.96	31.15	
MRT		36.54	16.59	31.15	

Small Test Set

2000 first sentence– headline pairs sampled from Gigaword dataset by Rush et al. (2015)

Conclusion

Is the topic sentence more useful than the first sentence for headline generation?
 Yes, for training (generalization)

2. Is the topic sentence **helpful in addition** to the first sentence for headline generation?

Yes, it acts as a supporting device

Future Direction

I. Assess the difference of using topic sentence as opposed to other sentence selection/ranking methods

2. Investigate whether using/adding other types of subset of the full news document is able to improve the performance

3. Automatically decide the optimal subset of text as input for headline generation (encoder-decoder architecture)

References (1)

- 1. Zajic, D., Dorr, B. J., and Schwartz, R. (2004). Bbn/umd at duc-2004: Topiary. In Proceedings of the North America Chapter of the Association for Computational Linguistics Workshop on Document Understanding, pages 112–119.
- 2. Colmenares, C. A., Litvak, M., Mantrach, A., and Silvestri, F. (2015). Heads: Headline generation as sequence prediction using an abstract feature-rich space. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 133–142.
- 3. Banko, M., Mittal, V. O., and Witbrock, M. J. (2000). Headline generation based on statistical translation. In *Proceedings of the 38th Annual Meeting* on Association for Computational Linguistics, pages 318–325.
- 4. Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstractive sentence summarization. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 379–389.
- 5. Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, pages 3104–3112.
- 6. Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In *Proceedings of the International Conference on Learning and Representation (ICLR)*.
- 7. Ayana, Shen, S.-Q., Lin, Y.-K., Tu, C.-C., Zhao, Y., Liu, Z.-Y., and Sun, M.-S. (2017). Recent advances on neural headline generation. *Journal of Computer Science and Technology*, 32(4):768–784, Jul.

References (2)

- 8. Alfonseca, E., Pighin, D., and Garrido, G. (2013). Heady: News headline abstraction through event pattern clustering. In *Proceedings of the 51st* Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1243–1253.
- 9. Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. In *Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation*, pages 103–111,
- 10. Tan, J., Wan, X., and Xiao, J. (2017). From neural sentence summarization to headline generation: A coarse-to-fine approach. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 4109–4115.
- 11. Wang, W. (2012). Chinese news event 5w1h semantic elements extraction for event ontology population. In Proceedings of the 21st International Conference on World Wide Web, WWW '12 Companion, pages 197–202.
- 12. Chopra, S., Auli, M., and Rush, A. M. (2016). Abstractive sentence summarization with attentive recurrent neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 93–98.
- 13. Nallapati, R., Zhou, B., dos Santos, C. N., and C, aglar G[°]ulc, ehre and Bing Xiang. (2016). Abstractive text summarization using sequence-tosequence rnns and beyond. In *CoNLL*.
- 14. Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. (2017). OpenNMT: Open-source toolkit for neural machine translation. In *Proceedings of ACL, System Demonstration*, pages 67-72.