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Automatic Headline Generation

• Given a news document, we want to generate a
corresponding headline

• Automatic headline generation system is used by news
editor as a supporting tool

• Single document summarization
• Extractive approach (Zajic et al., 2004); Colmenares et al., 2015)

• Abstractive approach (Banko, et al., 2000; Rush et al. 2015)
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https://www.japantimes.co.jp/life/2018/03/04/lifestyle/tr
aditional-arts-live-kids/#.WqFf8ZOuxsM

…



Abstractive Headline Generation

• Abstractive approach recently motivated by the success of neural machine
translation systems (sequence to sequence) (Sutskever et al., 2014)

• Formalization
• Given a sequence of 𝑁 input words (source documents)
𝒙 = 𝑥%, 𝑥', … , 𝑥)

• The task is to find a sequence of 𝑀 output words (summary/headline)
𝒚 = 𝑦%, 𝑦', … , 𝑦-;𝑀 < 𝑁

• It means we are modeling the conditional probability of input—output pair

summary = arg max
𝒚

P(𝒚|𝒙, 𝜽)
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Factoring the Objective

P 𝒚 𝒙, 𝜽 = :
𝒕<𝟏

𝑴

P 𝑦? 𝑦%, … , 𝑦? , 𝒙, 𝜽)

Encoder converts a sequence of input 
𝒙 into a single representation 𝒄

A decoder converts the 
representation of input (𝒄) into a 
sequence of output 𝒚
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Encoder – Decoder Model
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Encoder – Decoder Model
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Encoder – Decoder Model
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Encoder – Decoder Model with Attention
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RelatedWork
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Encoder - Decoder Headline

Encoder - Decoder Headline

First Sentence 
(selection method)

Long Input
Vanishing gradient problem 
(Cho et al., 2014; Tan et al., 
2017)

Past Studies (headline 
generation)
Use the first sentence
(Rush et al., 2015; Chopra et 
al., 2016; Nallapati et al., 2016; 
Ayana et al., 2017)

Ideally

Reality
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Problems

• The first sentence might not be effective, as the information in a text is distributed
across sentences (Alfonseca et al., 2013)

• Using long input may degrade the performance of encoder-decoder (Cho et al.,
2014; Tan et al., 2017)

• Previous studies did not consider 5W1H (what, who, when, where, whom, how)
information when analyzing news (Wang, 2012).

• How to consider inverse pyramid structure of news (organization structure)
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Proposal (contribution)

• Using topic sentence instead of/in addition to the first sentence

• Topic sentence (Wang, 2012) contains key information of news;
it has the <subject, verb, object> elements and at least one
subordinate element time or location (factual information).
• Time = DATE andTIME (NE tag)

• Location = GPE and LOC (NE tag)

• We extract only one topic sentence from news (the earliest
sentence satisfying the rules)
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Proposal (contribution)
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Encoder - Decoder Headline

First Sentence 
(selection method)

Past Studies (headline 
generation)
Use the first sentence
(Rush et al., 2015; Chopra et 
al., 2016; Nallapati et al., 2016; 
Ayana et al., 2017)

Baseline
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Topic sentence 
(selection method)

Contribution

???

Current Study
Use topic sentence for 
sentence selection



Hypothesis

• We hypothesized that topic sentence is likely to provide a better generalization for
the encoder–decoder than using the first sentence

• Generalization means allowing the model to predict the headline of the unseen data
in a better way

• Topic sentence ≠ statistical ranking techniques (SRT); SRT considers surface
information without considering factual information
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Experimental Questions

1. Is the topic sentence more useful than the first sentence for headline generation?

2. Is the topic sentence helpful in addition to the first sentence for headline
generation?
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Experimental Setting

• We train the encoder—decoder model using three variants of input
• First sentence (OF)

• Topic sentence (OT)

• Both first and topic sentence (OTF)

• We extract only one topic sentence (the earliest sentence satisfying the rules)

• We use the seq2seq implementation of OpenNMT (Klein, et al; 2017)
• Encoder is 2-layer bidirectional LSTM RNN (500 hidden units)

• Decoder is 2-layer LSTM RNN (500 hidden units)

• Global attention mechanism and dropout (0.3) are used

and headline (pair)
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Dataset

• We used Gigaword dataset (10M documents)

Data # docs Found-1 Found-2-* Not found

Train (~90%) 2,755K 2,023K (73.43%) 580K (21.06%) 152K (5.54%)
Valid (~5%) 139K 101K (72.76%) 29K (21.58%) 7K (5.69%)
Test (~5%) 134,K 98K (72.91%) 28K (21.19%) 8K (5.90%)

• Found-1 : Topic sentence is found as the first sentence of the text
• Found-2 : Topic sentence is found as the second or later sentence of the text
• Not found : Topic sentence is not found in the text
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Performance

• OF : trained using (first sentence – headline)

• OT : trained using (topic sentence – headline)

• OTF : trained using (both topic+ first sentences – headline pair)

• R : ROUGE

Model
Test Set

Topic First First and Topic
R-1 R-2 R-L Copy rate R-1 R-2 R-L Copy rate R-1 R-2 R-L Copy rate

OF 29.45 12.06 26.97 0.72 40.83 20.32 37.97 0.81 23.26 7.90 20.89 0.69
OT 33.73 14.37 30.77 0.71 40.71 19.68 37.76 0.80 26.69 8.98 23.69 0.71

OTF 32.00 13.03 29.11 0.76 41.47 20.49 38.46 0.83 26.49 8.91 23.45 0.75
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Output Example

• Input: for american consumers , the prospect of falling prices sure sounds like a good
thing but a prolonged and widespread decline , with everything from real-estate
values to income collapsing , would spell disaster for the u.s. economy .

• Reference headline: falling prices stagnant employment numbers have economists
worrying about deflation

• OF Prediction: u.s. consumer confidence drops to new high

• OT Prediction: u.s. consumer prices fall #.# percent in may

• OTF Prediction: u.s. consumer prices fall for first time since ####
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Additional Test
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Model Training data
ROUGE

R-1 R-2 R-L
OF

2.7 M docs (Rush et al., 
2015 + additional filter)

28.38 13.00 26.27
OT 28.77 12.69 26.40
OTF 29.37 13.13 27.08

ABS+

3.7 M docs (Rush et al., 
2015)

29.78 11.89 26.97
words-lvt2k-1sent 32.67 15.59 30.64
OpenNMT bechmark* 33.13 16.09 31.00
RAS-Elman 33.78 15.96 31.15
MRT 36.54 16.59 31.15

Small Test Set

2000 first sentence–
headline pairs sampled 
from Gigaword
dataset by Rush et al. 
(2015)



Conclusion

1. Is the topic sentence more useful than the first sentence for headline generation?

Yes, for training (generalization)

2. Is the topic sentence helpful in addition to the first sentence for headline
generation?

Yes, it acts as a supporting device
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Future Direction

1. Assess the difference of using topic sentence as opposed to other sentence
selection/ranking methods

2. Investigate whether using/adding other types of subset of the full news document
is able to improve the performance

3. Automatically decide the optimal subset of text as input for headline generation
(encoder-decoder architecture)
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