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Chapter 1

Introduction

The team “Jolly Pochie [dz̧óli·pót
∫
i:]” has participated in the RoboCup Four-legged

League since 2003. Jolly Pochie consists of the faculty staff and graduate/undergraduate
students of Department of Informatics, Kyushu University and Department of Sys-
tem Information Sciences, GSIS, Tohoku University [12].

Faculty members
Ayumi Shinohara and Akira Ishino

Graduate Students
Hayato Kobayashi, Satoshi Abe, Akihiro Kamiya, Tsugutoyo Osaki and Tet-
suro Okuyama

Undergraduate Students
Shuhei Yanagimachi, Keisuke Oi, Takahito Sasaki, Tomoyuki Nakamura,
Seiji Hirama, Wataru Matsubara and Eric Williams

Our research interests mainly include machine learning, machine discovery,
data mining, image processing, string processing, software architecture, visualiza-
tion, and so on. RoboCup is a suitable benchmark problem for these domains.

Our main improvements of this year are broken into three parts. The first is
more accurate object recognition of our vision system by improving our object
recognition algorithms and our learning tool generating color tables. Our frame-
work, our modules and our bots is the same as last year. They are explained in
technical report of last year [16].

The second is more robust estimation of ball’s location by utilizing a new local-
ization technique. The third is work saving for developing successful ball trapping
skills by utilizing an autonomous learning technique for the skills.

The rest of this report is organized as follows. Chapter 2, we give outline of
our image processing system. Chapter 3 shows the ball localization techniques.
Chapter 4 shows how to learn ball trapping skills. Chapter 5 describes our new
behavior system, and Chapter 6 illustrates soccer strategies used in the system.
Chapter 7 describes our new shot motions. Chapter 8 describes the results of the
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technical challenges in RoboCup 2006. Finally, Chapter 9 presents the conclusion
of this report.
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Chapter 2

Vision

We use a color table for color segmentation of images. The color table consists of
the 3D-Matrix in the YUV space, which size is64× 64× 64. The color table is
made manually using a nearest neighbor learning algorithm. The details are written
in our technical report of last year [16].

This year, we improved our learning tool showed in Fig. 2.1. Our learning
process is as follows. First we select one of the symbolic colors (white, green, dark
blue, light blue, orange, yellow, red, pink or black). Next we click a point in the
raw image on the tool for labeling it as the selected symbolic color. In last year, it
took much time for making color tables, because we were not able to select more
than one point in the image. Therefore, we extended the function of the tool so
that we can select multiple points at one time. In the new tool, we can label the
points in the dragged range as the selected symbolic color with dragging a part of
the image. The process of hand labeling became more speedy than last year.

It is practically difficult to pick up the little or complex shape in images, al-
though the process is easier than last year. Therefore, we segmented the image into
regions (by colors) in advance with utilizing the segmentation algorithm that is
inspired by the paper [23]. In the paper, their segmentation consists of three steps:

- aHierarchical and Pyramidal Merging, initialized from the pixels,

- a ‘Video Scan’ (or ‘Data Flow’) Merging, adapted for the pyramidal region,

- aColor Merging, merging step based on a color classification of regions.

Our segmentation algorithm consists of these two previous steps. The algo-
rithm segments the image into regions according to the YUV values. We have only
to click a certain region in the segmented image, so that the points in the region are
labeled as the selected symbolic color as shown in Fig. 2.2. The algorithm made
the hand labeling process easier and faster.

Our learning tool became more useful than last year, and we were able to
pickup much training data. However, it takes much learning time, because the
learning tool must calculate the influence of all training data over the whole color

5



Figure 2.1: Our learning tool.
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Figure 2.2: Segmentation tool.
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Figure 2.3: The color table segments image.

space. Therefore, we improved the learning tool so that it can calculate the influ-
ence of training data only near each point in the whole color space, because the
influence is negligible little if the training data are far away from the point.

We improved the learning tool and were able to make more correct color tables.
However, the dark orange (e.g. shade of the ball) can be misclassified into red, or
the dark yellow (e.g. shade of the yellow goal) can be misclassified into orange.
According to the paper [2], this color misclassification is liable to be caused by the
one-to-one mapping from one point on the image to one symbolic color. Therefore,
we allowed our color tables for mapping from one color to several symbolic colors.
As shown in Fig. 2.3, some points are labeled as several symbolic colors.

2.1 Object Recognition

Last year, our object recognition routine caused misidentification occasionally even
if the color table was made firmly. As a result, our players sometimes was not
able to play a game well. Therefore, we reinforced the routine by adding various
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restrictions in this year.

2.1.1 Ball Recognition

Last year, we especially suffered from ball misidentification. For example, red
uniforms and yellow-pink boundaries were often mis-recognized as a ball. Thus,
we added some restrictions to our ball recognition routine. Our ball recognition
routine has two different methods. One is used when the whole of the ball is in the
image, and the other is used when the part of it is in the image.

The restrictions of former method is as follows. First, when yellow and pink
pixels are detected both above and below ball candidates at the same time, the
candidates are ignored because they are inferred not as a ball but as the yellow-
pink boundary of a beacon. Second, when red or white pixels are detected more
than three times around ball candidates, the candidates are ignored because they are
inferred not as a ball but as a red uniform. Third, when green pixels are not detected
around ball candidates, the candidates are ignored because they are inferred as a
ball not on the field.

The restrictions of latter method is as follows. Last year, a red player’s uniform
was sometimes misunderstood as the ball which intersects the edges of the image.
Therefore, we added a process which counts pixels of the ball candidates which
intersect them. Ball’s pixels are able to count by computing its area. When pixels
are too few, the ball candidates are ignored because they inferred as a red uniform.

2.1.2 Landmark Recognition

Beacon Recognition

As regards beacon recognition, an audience is often mis-recognized as a pole.
Therefore, we added the following restrictions.

First, when beacon candidates are too high or too low, the candidates are ig-
nored. Second, when white pixels are not detected below beacon candidates, the
candidates are ignored. Third, both a beacon and a diagonally opposite beacon are
recognized at the same time, the only nearby beacon is accepted, and the other is
rejected.

Goal Recognition

Finally, as regards goal recognition, a straw wall and an audience are mis-recognized
as a goal. Therefore, we added the following restrictions.

First, green pixels are not detected below goal candidates, the candidates are
ignored. Second, green pixels are detected above goal candidates, the candidates
are ignored. In addition, we improved the recognition routine by correlation in the
same manner as the beacon recognition.
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2.2 Player Recognition

This year, we developed a player recognition routine. The player recognition rou-
tine is a part of our vision module.

All players wear a team color (red or blue) uniform. Therefore, we used the uni-
form for a target of the player recognition. The vision module computes connected
components for a specific color image that received from our camera module, and
sends team color components’ information to the player recognition routine. The
recognition routine recognizes each of them to be a player. The red square shown
in Fig. 2.4 indicates a part recognized as a player. This routine was used by the
Passing Challenge and New Goal Challenge. The details of the routine are as fol-
lows.

1. The player recognition routine receives team color components’ information
from the vision module.

2. The first indication is that the length of the edge of each component is longer
than 3 pixels.

3. For each component, the total number of pixels must be over 5 pixels.

4. We calculate a centroid (cx, cy) for each component.

5. We check right and left colors of each component by line scanning.

6. If white pixels are detected at the same time, we recognize the component as
a player.

Besides, we developed a visualization tool for our player recognition routine
showed in Fig. 2.5. The red arrow in the figure means the direction to an opposite
player recognized by the routine.

This routine has been inadequate yet, because it can only output an angle to
another player. The following items are the problems for the next year.

• To calculate a more correct estimation of distance from the player

• To change the ending point of the distance estimation from the uniform to an
under foot of the player

• To improve the accuracy of the recognition when two or more players are
seen in camera view

• To improve the processing speed of this routine

10



Figure 2.4: Player recognition

Figure 2.5: Visualization
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Chapter 3

Ball Localization

3.1 Introduction

In RoboCup, estimating the position of a ball accurately is one of the most impor-
tant tasks. Most robots in Middle-size League have omni-directional cameras, and
in Small-size League, they use ceiling cameras to recognize objects. In the Four-
legged League, however, robots have only low resolution cameras with a narrow
field of vision on their noses, while the size of the soccer field is rather large. These
facts make it difficult for the robots to estimate the position of the ball correctly,
especially when the ball is far away or too near. Moreover, since the shutter speed
of the camera is not especially fast, and its frame rate is not very high, tracking a
moving object is a demanding task for the robots. In order to tackle these problems,
several techniques have been proposed [22, 20]. Kalman filter method [13] is one
of the most popular techniques for estimating the position of objects in a noisy en-
vironment. It is also used to track a moving ball [4]. Methods using particle filters
have been applied for tracking objects [10], and especially in Four-legged League,
the method using Rao-Blackwellised particle filters has had great success[20].

In this chapter, we consider how to estimate the trajectory of the moving ball,
as well as the position of the static ball, based on the Monte-Carlo localization
method [3]. Monte-Carlo localization has usually been used for self-localization in
the Four-legged League. We extend this to handle the localization of the ball. We
have already mentioned a primitive method based on this idea in [11], where we
had ignored the velocity of the ball. We propose three extended methods to deal
with the velocity of the ball and report some experimental results.

3.2 Ball Recognition from the Image Data

As we have already mentioned in the previous section, the camera of the robot in
Four-legged league is equipped on its nose. The field of vision is narrow (56.9◦ for
horizontal and45.2◦ for vertical), and the resolution is also low (412× 320at the
maximum). Moreover, stereo vision is usually impossible, although some attempts
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Figure 3.1: Cases of Ball Recognition. Dots on the edge show vertexes of a in-
scribed triangle. The diameter of the ball is calculated by using these vertexes.

to emulate it by using plural robots have been reported [14, 26]. Therefore, first of
all, an accurate recognition of the ball from a single image captured by the camera
is indispensable in estimating the position of the ball accurately. In particular, the
estimation of the distance to the ball from the robot is very critical in establishing
a stable method for estimating the position of the (possibly moving) ball.

A naive algorithm which counts the orange pixels in the image and uses it
to estimate the distance does not work well, since the ball is often hidden by other
robots, and the ball may be in the corner of the robot’s view as shown in Figure 3.1.
In addition, the projection of the line of sight to the ground is used for calculating
the distance to the object, but it depends on the pose of the robot and is affected by
the locomotion of the robot. In the Four-legged League, the robot’s sight is very
shaky; therefore, we do not use this method either. In this section, we will show
our algorithm ability to recognize the ball and estimate the position relative to the
robot from a single image. It will become the base for estimations from multiple
images, as described in the following sections.

In the image, the biggest component colored by orange and satisfying the fol-
lowing heuristic conditions is recognized as the ball. (1) The edge length of the
component has to be more than 10 pixels, which helps exclude components too
small. (2) The ratio of the orange pixels to the area of the bounding box must ex-
ceed 40%. (3) If the component touches the edge of the image, the length of the
longer side of the bounding box must be over 20 pixels.

We use the diameter of the ball to estimate the distance to it. However, the ball
is often hidden by other robots partially, and when the robot approaches to the ball,
only a part of the ball is visible at the corner of the camera view. Thus the size
of the bounding box and the total number of pixels are not enough to estimate the
distance accurately.

Figure 3.1 shows two cases of diameter estimation. When the ball is inside the
view completely (left image), we regard the length of longer side of the bounding
box as the diameter of the ball. When the bounding box touches to the edges of the
image (right image), we use three points of the components, since any three points
of the edge of a circle uniquely determine the center and the diameter of it.
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3.3 Ball Localization using Monte-Carlo Method

In this section, we propose a technique which estimates the position and velocity
of a moving ball based on the Monte-Carlo localization. This technique was intro-
duced for the self-localization in [7] and utilized in [21]. The aim is to calculate
the accurate position and velocity of the ball from a series of input images. In prin-
ciple, we use differences of positions between two frames. However, these data
may contain some errors. The Monte-Carlo method absorbs these errors so that the
estimation of the velocity becomes more accurate. In this method, instead of de-
scribing the probability density function itself, it is represented as a set ofsamples
that are randomly drawn from it. This density representation is updated every time
based on the information from the sensors.

We consider the following three variations of the method, in order to estimate
both the position and velocity of the moving ball. (1) Each sample holds both
the position and velocity, but is updated according to only the information of the
position. (2) Each sample holds both the position and velocity, and is updated
according to the information of both the position and velocity. (3) Two kinds of
samples are considered: one for the position, and the other for the velocity, which
are updated separately. For evaluating the effectiveness of our ball tracking system,
we experimented in both simulated and real-world environments. The details of the
algorithms and experimental results are shown below.

3.3.1 Ball Monte-Carlo localization updated by only position infor-
mation

First, we introduce a simple extension to our ball localization technique in [11]. In
this method, a sample is a tripleai = 〈~pi ,~vi , si〉, where~pi is a position of the ball,
~vi is a velocity of it, andsi is a score (1 ≤ i ≤ n) which represents how~pi and~vi fit
to observations. Fig 3.2 shows the update procedure.

When the robot recognizes a ball in the image, each scoresi is updated in step
6 ∼ 10, depending on the distance of~pi and the observed position~po. When the
ball is not found, let~po = ε. The constantτ > 0 defines theneighborhoodof the
sample. Moreover, the constantsmaxupandmaxdowncontrol theconservativeness
of the update. If the ratiomaxup/maxdownis small, response to the rapid change of
ball’s position becomes fast, but influence of errors become strong. The threshold
valuet controls the effect of misunderstandings. The functionrandomizeresetspi

andvi to random values andsi = 0. The functionrandom() returns a real number
randomly chosen between 0 and 1. The return values~pe and~ve are weighted mean
of samples whose scores are at leastt.

At first, we show a simulation results on this method. The simulation is per-
formed as follows. We choose20 positions from(800, 1300) to (−800, 1300)at
regular intervals asobserved positions, which emulates that a robot stands at the
center of the field without any movement and watches the ball rolling from left
to right. Since in practice, the distance estimation to the ball is not very accurate

14



Algorithm BallMoteCarloLocalizationUpdatedByOnlyPositionInfor-
mation
Input. A set of samplesQ = {〈~pi ,~vi , si〉} and observed ball position~po

Output. estimated ball position~pe and velocity~ve.

1 for i := 1 to n do begin
2 ~pi := ~pi + ~vi ;
3 if ~pi is out of the fieldthen
4 randomize(〈pi , vi , si〉)
5 end;
6 if ~po , ε then
7 for i := 1 to n do begin
8 score:= exp(−τ|~pi − ~po|);
9 si := max(si −maxdown,min(si + maxup, score))
10 end
11 avgScore:= 1

n

∑n
i=1 si ;

12 ~pe := ~0; ~ve := ~0; w := 0;
13 for i := 1 to n do begin
14 if si < avgScore· random() then
15 randomize(〈pi , vi , si〉)
16 else ifsi > t then begin
17 ~pe := ~pe + si ~pi ;
18 ~ve := ~ve + si ~vi ;
19 w := w + si

20 end;
21 end;
22 ~pe := ~pe/w; ~ve := ~ve/w;
23 output ~pe, ~ve

Figure 3.2: Procedure Ball Monte-Carlo Localization updated by only position
information
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compared to the direction estimation, we added strong noise toy-direction and
weak noise tox-direction of the observed positions. These positions are shown as
diamond-shaped points in Fig. 3.3 and Fig. 3.4. We examined the above method
and a simple Kalman filter method to predict the positions of the ball from these
noisy data. The lines in Fig. 3.3 and 3.4 shows the trajectories of them for 40
frames (in the first 20 frames, the observed positions are given, and in the last 20
frames, no observed data is given). After some trials, we set the parameters as fol-
lows. The number of samplesn = 500,maxup= 0.1, maxdown= 0.05, t = 0.15,
andτ = 0.008. Compared to Kalman filter, our method failed to predict the tra-
jectory of the positions after the ball is out of the view, because the velocity of the
samples did not converge well.

 0

 500

 1000

 1500

 2000

 2500

-1000 -500  0  500  1000  1500  2000  2500  3000

Simulated Ball Position
Kalman Filter

MonteCarlo (pos only)

Figure 3.3: The result of the simulation
with Kalman filter and MonteCarlo(pos
only)
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Simulated Ball Position
MonteCarlo(pos and vel)

MonteCarlo(two sets)

Figure 3.4: The result of the simulation
with MonteCarlo(pos and vel) and Mon-
teCarlo(two sets)

3.3.2 Ball Monte-Carlo localization updated by position and velocity
information

In the previous method, each sample holds its own velocity, and in principal, good
sample holding good position and velocity would get high score. However in the
previous experiment, the velocity did not converged well. Therefore, we tried to
reflect the velocity explicitly to the score, intended to accelerate the convergence.
In the second method, we added the procedure shown in Fig. 3.5 to the previous
method, between Step 10 and Step 11 in Fig. 3.2. Since theobserved velocity~vo is
not given explicitly, it is substituted by(~po− ~plast)/dt, where~plast is the last position
of the ball anddt is the difference between these two frame numbers.

The lineMonteCarlo(pos and vel)in Fig. 3.4 shows the result, with the param-
etersτv = 0.08, maxupv = 1.0, maxdownv = 0.1. Unfortunately, it also failed to
predict the trajectory because the converge rate was not improved well.
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for i := 1 to n do begin
score:= exp(−τv|~vi − ~vo|);
si := max(si −maxdownv,min(si + maxupv, score))

end

Figure 3.5: Additional procedure to update the score reflecting the velocity explic-
itly in the second method.

3.3.3 Ball Monte-Carlo localization with two sets of samples

In the third method, we took another approach in order to reflect the goodness
of the velocity to the score. The idea is to split the samples into two categories,
one for the positions〈~pi , si〉, and the other for the velocities〈~vi , si〉. The score of
~p is updated in step8 ∼ 11 of PositionUpdatewhile that of~v in step2 ∼ 5 of
VelocityUpdateindependently, in Fig. 3.6.

The lineMonteCarlo(two sets)in Fig. 3.4 shows the results. The estimated
positions fits the pathway of the rolling ball, and the predicted trajectory when ball
was out of sight is also as we expected. The effectiveness of it is comparable to the
Kalman filter method.

3.3.4 On the number of samples

We verified the relationship between the accuracy of the predictions and the num-
ber of samples. Fig. 3.7 shows some of these experiments for the proposed three
methods. Thex-axis is the number of samples ranging10 to 1000, and they-axis
is the average error of five trials, which measure the difference between the real
position and the predicted position. In the left figure, the situation was almost the
same as the previous experiments. In the right figure, we put a small obstacle in
front of the robot which hides the ball in the center of the view. Because of this ob-
stacle, some of observed positions were missing and the average errors increased.
In general, the error decreases as the number of samples increases for all of these
three methods. Among them, the third method which separates the samples into
two categories performed the best. When the number of samples exceeds 150, the
accuracy did not changed in practice.

Remind that the data on observed positions, which are given as input, them-
selves contained some errors. For example, the average error of the observed po-
sitions was 52.6 mm in the experiment without obstacle. However, the average
error of the third method was less than 40 mm when we took at least 150 samples,
which verified that the proposed methods succeeded to stabilize the predicted ball
positions.

3.3.5 Real-world Experiments

We also performed many experiments in the real-world environments, at which
we used the real robot in the soccer field for RoboCup competitions. We show

17



Algorithm BallMoteCarloLocalizationWithTwoSets
Input. Two sets of samplesPOS = {〈~pi , si〉} and VEL = {〈~vi , si〉}, observed ball
position~po, calculated ball velocity~vo.
Output. estimated ball position~pe and velocity~ve.

PositionUpdate(POS,VEL, ~po,~vo)

1 ~ve := VelocityUpdate(VEL, ~po,~vo);
2 for i := 1 to n do begin
3 ~pi := ~pi + ~ve;
4 if ~pi is out of the fieldthen
5 randomize(〈~pi , si〉)
6 end;
7 if ~po , ε then
8 for i := 1 to n do begin
9 score:= exp(−τp|~pi − ~po|);
10 si := max(si −maxdownp,

min(si + maxupp, score))
11 end;
12 ~pe = ~0; w = 0;
13 avgScore:= 1

n

∑n
i=1 si ;

14 for i := 1 to n do begin
15 if si < avgScore· random() then
16 randomize(〈~pi , si〉)
17 else ifsi > tp then begin
18 ~pe := ~pe + si ~pi ;
19 w := w + si

20 end;
21 end;
22 ~pe := ~pe/w;
23 output ~pe, ~ve

VelocityUpdate(VEL, ~po,~vo)

1 if ~po , ε then
2 for i := 1 to mdo begin
3 scorenew := exp(−τv|~vi − ~vo|);
4 si := max(si −maxdownv,

min(si + maxupv, score))
5 end;
6 ~ve = ~0; w = 0;
7 avgScore:= 1

m

∑m
i=1 si ;

8 for i := 1 to mdo begin
9 if si < avgScore· random() then
10 randomize(〈~vi , si〉)
11 else ifsi > tv then begin
12 ~ve := ~ve + si ~vi ;
13 w := w + si

14 end;
15 end;
16 ~ve := ~ve/w;
17 output ~ve

Figure 3.6: Procedure Ball Monte-Carlo Localization with two sets of samples
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Figure 3.7: Relationship between the number of samples and accuracy, in two
situations, without obstacle (left) and with an obstacle (right).

some of them in Fig. 3.8, where we compared the third method which we proposed
with the Kalman filter method. The purpose was to evaluate the robustness of
the methods against the obstacle and the change directions of the ball movement.
In the left figure, the ball rolled from right to left while a small obstacle in front
of the robot hides for some moments. In the right figure, the ball was kicked at
(400,900)and went left, then it is rebounded twice at(−220,1400)and(−50,500),
and disappeared from the view to the right. Mesh parts in the figures illustrates the
visible area of the robot. From these experiments, we verified that the proposed
method is robust against the frequent change of the directions, which is often the
case in real plays.
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Figure 3.8: Real world experiments. In the left situation, the ball rolled from right
to left behind a small obstacle. In the right situation, the ball started at(400,900)
and rebounded twice at(−220,1400) and (−50, 500), and disappeared from the
view to the right.
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3.4 Conclusions

We proposed some applications of Monte-Carlo localization technique to track a
moving ball in noisy environment, and showed some experimental results. We tried
three variations, depending on how to treat the velocity of the ball movement. The
first two methods did not work well as we expected, where each sample has its own
velocity value together with the the position value. The third method, which we
treated positions and velocities separately, worked the best. We think the reason
as follows. If we treat positions and velocities together, the search space has four
dimensions. On the other hand, if we treat them separately, the search space is
divided into two spaces, each of them has two dimensions. The latter would be
easy to converge to correct values. The converge ratio is quite critical in RoboCup,
because the situation changes very quickly in real games.

We compared the proposed method with Kalman filter method, which is very
popular. The experiments were not very comprehensive: for example, the observ-
ing robot did not move. Nevertheless, we verified that the proposed method is
attractive especially when the ball rebounds frequently in real situations.

In RoboCup domain, various techniques to improve the ball tracking ability
are proposed. For example, cooperative estimation with other robots is proposed
in [5, 14]. we plan to integrate these idea into our method, and perform more
comprehensive experiments in near future.
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Chapter 4

Learning of Ball Trapping

4.1 Introduction

For robots to function in the real world, they need the ability to adapt to unknown
environments. These are known aslearningabilities, and they are essential in tak-
ing the next step in RoboCup. As it stands now, it is humans, not the robots them-
selves, that hectically attempt to adjust programs at the competition site, especially
in the real robot leagues. But what if we look at RoboCup in a light similar to that
of the World Cup? In the World Cup, soccer players can practice and confirm cer-
tain conditions on the field before each game. In making this comparison, should
robots also be able to adjust to new competition and environments on their own?
This ability for something to learn on its own is known asautonomous learning
and is regarded as important.

In this chapter, we force robots to autonomously learn the basic skills needed
for passing to each other in the four-legged robot league. Passing (including re-
ceiving a passed ball) is one of the most important skills in soccer and is actively
studied in the simulation league. For several years, many studies [24, 9] have used
the benchmark of good passing abilities, known as “keepaway soccer”, in order to
learn how a robot can best learn passing. However, it is difficult for robots to even
control the ball in the real robot leagues. In addition, robots in the four-legged
robot league have neither a wide view, high-performance camera, nor laser range
finders. As is well known, they are not made for playing soccer. Quadrupedal lo-
comotion alone can be a difficult enough challenge. Therefore, they must improve
upon basic skills in order to solve these difficulties, all before pass-work learning
can begin. We believe that basic skills should be learned by a real robot, because
of the necessity of interaction with a real environment. Also, basic skills should
be autonomously learned because changes to an environment will always consume
much of people’s time and energy if the robot cannot adjust on its own.

There have been many studies conducted on the autonomous learning of quadrupedal
locomotion, which is the most basic skill for every movement. These studies
began as far back as the beginning of this research field and continue still to-
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day [8, 15, 18, 28]. However, the skills used to control the ball are often coded
by hand and have not been studied as much as gait learning. There also have been
several similar works related to how robots can learn the skills needed to control
the ball. Chernova and Veloso [1] studied the learning of ball kicking skills, which
is an important skill directly related to scoring points. Zagal and Solar [29] studied
the learning of kicking skills as well, but in a simulated environment. Although
it was very interesting in the sense that robots could not have been damaged, the
simulator probably could not produce complete, real environments. Fidelman and
Stone [6] studied the learning of ball acquisition skills, which are unique to the
four-legged robot league. They presented an elegant method for autonomously
learning these unique, advanced skills. However, there has thus far been no study
that has tried to autonomously learn the stopping and controlling of an oncom-
ing ball, i.e. trapping the ball. In this paper, we present an autonomous learning
method for ball trapping skills. Our method will enhance the game by way of
learned pass-work in the four-legged robot league.

4.2 Preliminary

4.2.1 Ball Trapping

Before any learning can begin, we first have to accurately create the appropriate
physical motions to be used in trapping a ball accurately before the learning pro-
cess. The picture in Fig. 4.1 (a) shows the robot’s pose at the end of the motion.
The robot begins by spreading out its front legs to form a wide area with which to
receive the ball. Then, the robot moves its body back a bit in order to absorb the
impact caused by the collision of the body with the ball and to reduce the rebound
speed. Finally, the robot lowers its head and neck, assuming that the ball has passed
below the chin, in order to keep the ball from bouncing off of its chest and away
from its control. Since the camera of the robot is equipped on the tip of the nose,
it actually cannot watch the ball below the chin. This series of motions is treated
as single motion, so we can neither change the speed of the motion, nor interrupt
it, once it starts. It takes 300 ms (= 60 steps× 5 ms) to perform. As opposed to
grabbing or grasping the ball, this trapping motion is instead thought of as keeping
the ball, similar to how a human player would keep control of the ball under his/her
foot.

The judgment of whether the trap succeeded or failed is critical for autonomous
learning. Since the ball is invisible to the robot’s camera when it’s close to the
robot’s body, we utilized the chest PSD sensor. However, the robot cannot make an
accurate judgment when the ball is not directly in front of their chest or after it takes
a droopy posture. Therefore, we utilized a “pre-judgment motion”, which takes 50
ms (= 10 steps× 5 ms), immediately after the trapping motion is completed, as
shown in Fig. 4.1 (b). In this motion, the robot fixes the ball between its chin and
chest and then lifts its body up slightly so that the ball will be located immediately
in front of the chest PSD sensor, assuming the ball was correctly trapped to begin
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(a) trapping motion (b) pre-judgment motion

Figure 4.1: The motion to actually trap the ball (a), and the motion to judge if it
succeeded in trapping the ball (b).

with.

4.2.2 One-dimensional Model of Ball Trapping

Acquiring ball trapping skills in solitude is usually difficult, because robots must be
able to search for a ball that has bounced off of them and away, then move the ball
to an initial position, and finally kick the ball again. This requires sophisticated,
low-level programs, such as an accurate, self-localization system; a strong shot that
is as straight as possible; and a locomotion which utilizes the odometer correctly.
In order to avoid additional complications, we simplify the learning process a bit
more.

First, we assume that the passer and the receiver face each other when the
passer passes the ball to the receiver, as shown Fig. 4.2. The receiver tries to face
the passer while watching the ball that the passer is holding. At the same time, the
passer tries to face the receiver while looking at the red or blue chest uniform of
the receiver. This is not particularly hard to do, and any team should be able to
accomplish it. As a result, the robots will face each other in a nearly straight line.
The passer need only shoot the ball forward so that the ball can go to the receiver’s
chest. The receiver, in turn, has only to learn a technique for trapping the oncoming
ball without it bouncing away from its body.

Ideally, we would like to treat our problem, which is to learn ball trapping
skills, one-dimensionally. In actuality though, the problem cannot be fully viewed
in one-dimension, because either the robots might not precisely face each other in
a straight line, or because the ball might curve a little due to the grain of the grass.
We will discuss this problem in Section 4.7.
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Figure 4.2: One-dimensional model of ball trapping problem.

Figure 4.3: Training equipment for learning ball trapping skills.

4.3 Training Equipment

The equipment we prepared for learning ball trapping skills in one-dimensional
is fairly simple. As shown in Fig. 4.3, the equipment has rails of width nearly
equal to an AIBO’s shoulder-width. These rails are made of thin rope or string,
and their purpose is to restrict the movement of the ball, as well as the quadrupedal
locomotion of the robot, to one-dimension. Aside from these rails, the robots use
a slope placed at the edge of the rail when learning in solitude. They kick the ball
toward the slope, and they can learn trapping skills by trying to trap the ball after
it returns from having ascended the slope.

4.4 Learning Method

Fidelman and Stone [6] showed that the robot can learn to grasp a ball. They em-
ployed three algorithms: hill climbing, policy gradient, and amoeba. We cannot,
however, directly apply these algorithms to our own problem because the ball is
moving fast in our case. It may be necessary for us to set up an equation which
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incorporates the friction of the rolling ball and the time at which the trapping mo-
tion occurs if we want to view our problem in a manner similar to these para-
metric learning algorithms. In this chapter, we apply reinforcement learning algo-
rithms [27]. Since reinforcement learning requires no background knowledge, all
we need to do is give the robots the appropriate reward for a successful trapping so
that they can successfully learn these skills.

The reinforcement learning process is described as a sequence of states, ac-
tions, and rewards

s0,a0, r1, s1,a1, r2, . . . , si ,ai , r i+1, si+1, ai+1, r i+2, . . . ,

which is a reflection of the interaction between the learner and the environment.
Here,st ∈ S is a state given from the environment to the learner at timet (t ≥ 0),
andat ∈ A(st) is an action taken by the learner for the statest, whereA(st) is
the set of actions available in statest. One time step later, the learner receives a
numerical rewardrt+1 ∈ R, in part as a consequence of its action, and finds itself in
a new statest+1.

Our interval for decision making is 40 ms and is in synchronization with the
frame rate of the CCD-camera. In the sequence, we treat each 40 ms as a single
time step, i.e.t = 0, 1,2, · · · means 0 ms, 40 ms, 80 ms,· · · , respectively. In our
experiments, the states essentially consist of the information on the moving ball:
relative position to the robot, moving direction, and the speed, which are estimated
by our vision system. Since we have restricted the problem to one-dimensional
movement in Section 4.2.2, the state can be represented by a pair of scalar variables
x anddx. The variablex refers to the distance from the robot to the ball estimated
by our vision system, anddx simply refers to the difference between the current
x and the previousx of one time step before. We limited the range of these state
variables such thatx is in [ 0 mm, 2000 mm ], anddx in [ −200mm, 200 mm ].
This is because if a value ofx is greater than 2000, it will be unreliable, and if the
absolute value ofdx is greater than 200, it must be invalid in games (e.g.dxof 200
mm means 5000 mm/s).

Although the robots have to do a large variety of actions to perform fully-
autonomous learning by nature, as far as our learning method is concerned, we can
focus on the following two macro-actions. One istrap, which initiates the trapping
motions described in Section 4.2.1. The robot’s motion cannot be interrupted for
350 ms until the trapping motion finishes. The other isready, which moves its head
to watch the ball and preparing totrap. Each reward given to the robot is simply
one of{+1,0,−1}, depending on whether it successfully traps the ball or not. The
robot can make a judgment of that success by itself using its chest PSD sensor. The
reward is1 if the trap action succeeded, meaning the ball was correctly captured
between the chin and the chest after thetrap action. A reward of−1 is given either
if the trap action failed, or if the ball touches the PSD sensor before thetrap action
is performed. Otherwise, the reward is0. We define the period from kicking the
ball to receiving any reward other than 0 as oneepisode. For example, if the current
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episode ends and the robot moves to a random position with the ball, then the next
episode begins when the robot kicks the ball forward.

In summary, the concrete objective for the learner is to acquire the correct
timing for when to initiate the trapping motion depending on the speed of the
ball by trial and error. Fig. 4.4 shows the autonomous learning algorithm used
in our research. It is a combination of the episodic SMDP Sarsa(λ) with the lin-
ear tile-coding function approximation (also known as CMAC). This is one of the
most popular reinforcement learning algorithms, as seen by its use in the keepaway
learner [24].

Here,Fa is a feature setspecified by tile coding with each actiona. In this
paper, we use two-dimensional tiling and set the number of tilings to 32 and the
number of tiles to about 5000. We also set the tile width ofx to 20 and the tile
width of dx to 50. The vector

−→
θ is a primary memory vector, also known as a

learning weight vector, andQa is aQ-value, which is represented by the sum of
−→
θ

for each value ofFa. The policyε-greedyselects a random action with probability
ε, and otherwise, it selects the action with the maximumQ-value. We setε = 0.01.
Moreover,−→e is aneligibility trace, which stores the credit that past action choices
should receive for current rewards.λ is a trace-decay parameterfor the eligibility
trace, and we simply setλ = 0.0. We set thelearning rate parameterα = 0.5 and
thediscount rate parameterγ = 1.0.

4.5 Experiments

4.5.1 Training Using One Robot

We first experimented by using one robot along with the training equipment that
was illustrated in Section 4.3. The robot could train in solitude and learn ball
trapping skills on its own.

Fig. 4.5(a) shows the trapping success rate, which is how many times the robot
successfully trapped the ball in 10 episodes. It reached about 80% or more after 250
episodes, which took about 60 minutes using 2 batteries. Even if robots continue to
learn, the success rate is unlikely to ever reach 100%. This is because the trapping
motions, which force the robot to move slightly backwards in order to try and
reduce the bounce effect, can hardly be expected to capture a slow, oncoming ball
that stops just in front of it.

Fig. 4.6 shows the result of each episode by plotting a circle if it was successful,
a cross if it failed in spite of trying to trap, and a triangle if it failed because of doing
nothing. From the 1st episode to the 50th episode, the robots simply tried to trap
the ball while it was moving with various velocities and at various distances. They
made the mistake of trying to trap the ball even when it was moving away (dx> 0),
because we did not give them any background knowledge, and we only gave them
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while still not acquiring trapping skillsdo1

go get the ball and move to a random position with the ball;2

kick the ball toward the slope;3

s← a state observed in the real environment;4

forall a ∈ A(s) do5

Fa← set of tiles fora, s;6

Qa← ∑
i∈Fa

θ(i);7

end8

lastAction← an optimal action selected byε-greedy;9
−→e ← 0;10

forall i ∈ FlastActiondo e(i)← 1;11

reward← 0;12

while reward= 0 do13

do lastAction;14

if lastAction= trap then15

if the ball is heldthen reward← 1;16

else reward← −1;17

else18

if collision occursthen reward← −1;19

else reward← 0;20

end21

δ← reward− QlastAction;22

s← a state observed in the real environment;23

forall a ∈ A(s) do24

Fa← set of tiles fora, s;25

Qa← ∑
i∈Fa

θ(i);26

end27

lastAction← an optimal action selected byε-greedy;28

δ← δ + QlastAction;29
−→
θ ← −→θ + αδ−→e;30

QlastAction← ∑
i∈FlastAction

θ(i);31
−→e ← λ−→e;32

if player acting in states then33

forall a ∈ A(s) s.t. a , lastActiondo34

forall i ∈ Fa do e(i)← 0;35

end36

forall i ∈ FlastActiondo e(i)← 1;37

end38

end39

δ← reward− QlastAction;40
−→
θ ← −→θ + αδ−→e;41

end42

Figure 4.4: Algorithm of our autonomous learning (based on keepaway
learner [24]).
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Figure 4.5: Results of three experiments.
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(b) Episodes 51–100
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(c) Episodes 101–150
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(d) Episodes 151–200

Figure 4.6: Learning process from 1st episode to 200th episode. A circle indi-
cates successful trapping, a cross indicates failed trapping, and a triangle indicates
collision with the ball.

two variables:x anddx. From the 51st episode to the 100th episode, they learned
that they could not trap the ball when it was far away (x > 450) or when it was
moving away (dx > 0). From the 101st episode to 150th episode, they began to
learn the correct timing for a successful trapping, and from the 151st episode to
200th episode, they almost completely learned the correct timing.

4.5.2 Training Using Two Robots

In the case of training using two robots, we simply replace the slope in the training
equipment with another robot. We call the original robot theActive Learner(AL)
and the one which replaced with slope thePassive Learner(PL). AL is the same as
in case of training using one robot. On the other hand, PL differs from AL in that
PL does not search out nor approach the ball if the trapping failed. Only AL does
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Figure 4.7: The left figure shows how our vision system recognizes a ball when
the other robot holds it. The ball looks to be smaller than it is, because a part of
it is hidden by the partner and its shadow, resulting in an estimated distance to
the ball that is further away than it really is. The right figure plots the estimated
values of the both the distancex and the velocitydx, when the robot kicked the
ball to its partner, the partner trapped it, and then the partner kicked it back. When
the training partner was holding the ball under its head though (the center of the
graph), we can see the robot obviously miscalculated ball’s true distance.

so. Other than this difference, PL and AL are basically the same.
We experimented for 60 minutes by using both AL and PL that had learned

in solitude for 60 minutes using the training equipment. Theoretically, we would
expect them to succeed in trapping the ball after only a short time. However, by
trying to trap the ball while in obviously incorrect states, they actually failed re-
peatedly. The reason for this was because the estimation of the ball’s distance to
the robot-in-waiting became unreliable, as shown in Fig. 4.7. This, in turn, was
due to the other robot holding the ball below its head before kicking it forward to
its partner. Such problems can occur during the actual games, especially in poor
lighting conditions, when teammates and adversaries are holding the ball.

Although we are of course eager to overcome this problem, we should not
force a solution that discourages the robots from holding the ball first, because ball
holding skills help them to properly judge whether or not they can successfully
trap the ball. It also serves another purpose, which is to give the robots a nicer,
straighter kick. Moreover, there is no way we can absolutely keep the adversary
robots from holding the ball. Although there are several solutions (e.g. measuring
the distance to the ball by using green pixels or sending the training partner to get
the ball), we simply continued to make the robots learn without having made any
changes. This was done in an attempt to allow the robots to gain experience related
to irrelevant states. In fact, it turns out they should never try to trap the ball when
x ≥ 1000anddx ≥ 200. Moreover, they should probably not try to trap the ball
whenx ≥ 1000anddx≤ −200.
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Fig. 4.5(b) shows the results of training using two robots. They began to learn
that they should probably not try to trap the ball while in irrelevant states, as this
was a likely indicator that the training partner was in possession of the ball. This
was learned quite slowly though, because the AL can only learn successful trapping
skills when PL itself succeeds. If PL fails, AL’s episode is not incremented. Even
if the player nearest the ball can go get it, the problem is not resolved because then
they just learn slowly in the end, though simultaneously.

4.5.3 Training Using Two Robots with Communication

Training using two robots, like in the previous section, unfortunately takes a long
time to complete. In this section, we will look at accelerating their learning by
allowing them to communicate with each other.

First, we made the robots share their experiences with each other, as in [19].
However, if they continuously communicated with each other, they could not do
anything else, because the excessive processing would interrupt the input of proper
states from the real-time environment. Therefore, we made the robots exchange
their experiences, which included what actionat they performed, the values of the
state variablesxt anddxt, and the rewardrt+1 at timet, but this was done only when
they received a reward other than 0, i.e. the end of each episode. They then updated

their
−→
θ values using the experiences they received from their partner. As far as the

learning achievements for our research is concerned, they can successfully learn
enough using this method.

We also experimented in the same manner as Section 4.5.2 using two robots
which can communicate with each other. Fig. 4.5(c) shows the results of this ex-
periment. They could rapidly adapt to unforeseen problems and acquire practical
trapping skills. Since PL learned its skills before AL learned, it could relay to AL
the helpful experience, effectively giving AL about a 50% learned status from the
beginning. These results indicate that the robots with communication learned more
quickly than the robots without communication.

4.6 Discussion

The three experiments above showed that robots could efficiently learn ball trap-
ping skills and that the goal of pass-work by robots can be achieved in one-dimension.
In order to briefly compare those experiments, Fig. 4.8 presents a few graphs,
where thex-axis is the elapsed time and they-axis is the total number of successes
so far. Fig. 4.8(a) and Fig. 4.8(b) shows the learning process with and without
communication, respectively, for 60 minutes after pre-learning for 60 minutes by
using two robots from the beginning. Fig. 4.8(c) and Fig. 4.8(d) shows the learning
process with and without communication, respectively, after pre-learning for 60
minutes in solitude.

Comparing (a) and (c) with (b) and (d) has us conclude that allowing AL and
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Figure 4.8: Total numbers of successful trappings with respect to the elapsed time.

PL to communicate with each other will lead to more rapid learning compared to
no communication. Comparing (a) and (b) with (c) and (d), the result is different
from our expectation. Actually, the untrained robots learned as much as or better
than trained robots for 60 minutes. The trained robots seems to be over-fitted for
slow-moving balls, because the ball was slower in the case of one robot learning
than in the case of two due to friction on the slope. However, it is still good strategy
to train robots in solitude at the beginning, because experiments that solely use two
robots can make things more complicated. In addition robots should also learn the
skills for a relatively slow-moving ball anyway.
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4.7 Conclusions and Future Work

In this chapter, we presented an autonomous learning method for use in acquiring
ball trapping skills in the four-legged robot league. Robots could learn and acquire
the skills without human intervention, except for replacing discharged batteries.
They also successfully passed and trapped a ball with another robot and learn more
quickly when exchanging experiences with each other. All movies of the earlier
and later phases of our experiments are available on-line (http://www.jollypochie.org/papers/).

We also tried finding out whether or not robots can trap the ball without the
use of the training equipment (rails for ball guidance). We rolled the ball to the
robot by hand, and the robot could successfully trap it, even if the ball moved a few
centimeters away from the center of its chest. At the same time though, the ball
would often bounce off of it, or the robot did nothing if the ball happened to veer
significantly away from the center point. In the future, we plan to extend trapping
skills into two-dimensions using layered learning [25], e.g. we will try to introduce
three actions of staying, moving to the left, and moving to the right into higher-
level layers. Since two-dimensions are essentially the same as one-dimension in
this case, it may be possible to simply use a wide slope. Good two-dimensional
trapping skills can directly make keepers or goalies stronger. In order to overcome
the new problems associated with a better goalie on the opposing team, robots may
have to rely on learning better passing skills, as well as learning even better ball
trapping skills. A quick ball is likely to move straightforward with stability, but
robots as they are now can hardly trap a quick ball. Therefore, robots must learn
skills in shooting as well as how to move the ball with proper velocity. It would
be most effective if they learn these skills alongside trapping skills. This is a path
that can lead to achieving successful keepaway soccer [24] techniques for use in
the four-legged robot league.
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Chapter 5

Strategy System

This year, we changed the description method of our high-level strategies to a sim-
ple if-then rule method from a state transition method. The state transition method
allows us to quickly develop step-by-step actions, e.g., actions which perform a cer-
tain action after achieving another certain action. This method, however, results in
annoying debugging work when we create huge programs, because we must care-
fully make sure that all transitions in all states are valid (otherwise, robots may stop
moving because of an infinite loop transition or a transition to an unknown state).
On the other hand, the if-then rule method allows us to create readable and brief
program codes which we can debug easily, although we must write more complex
program codes for such step-by-step actions. We intend to utilize machine learning
techniques for acquiring more complex rules as sophisticated strategies next year.

We also changed our behavior system, by which our low-level strategies were
created, for new high-level strategies. Our behavior system still supports the state
transition method, because low-level strategies mostly include step-by-step actions.

5.1 Behavior System

The new behavior system is based on our behavior system of last year. The differ-
ence from the old one is to utilize two types of behaviors. One is a normal behav-
ior, and the other is a non-stop behavior. The normal behaviors can be exchanged
anytime, while the non-stop behaviors can never be exchanged until they are ter-
minated. For example, the normal behaviors include approaching, positioning,
dribbling, and so on; The non-stop behaviors include shooting, guarding, catching,
and so on, which must be continued even if the situation is changed (e.g., the ball
is lost) during executing the behaviors.

The following code is an example of behavior creation in our system. The func-
tion “init” is called only once at the beginning. The function “setState” changes
the behavior’s state, which is also a function name that called by the system every
decision-making time. This example prints the string “action01” only once, i.e.
the function “init”, “action01”, “finish”, “finish”, ... are called during executing
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the behavior “foo”, in that order.

foo = Behavior("foo") -- or NonstopBehavior("foo")

function foo.init()
foo.setState("action01")

end

function foo.action01()
print("action01")
foo.setState("finish")

end

function foo.finish()
end

Moreover, we established a combo behavior mechanism that can combine sev-
eral behaviors. For example, we can create a behavior shooting a ball after catching
it by combining a shooting behavior and a catching behavior. The following code
is an example of combining two behaviors. The combo behavior “comboFooBar”
means the behavior “bar” is executed right after the behavior “foo” is terminated.

foo = Behavior("foo")
...
bar = Behavior("bar")
...
comboFooBar = ComboBehavior(foo, bar)
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Chapter 6

Strategies for Jolly Pochie 2006

6.1 Attacker

This year, we used two types of attacker scripts. One is “AtFG” we call. It designed
for games. The other is “AtMAX”. It designed for the penalty shoot-out and the new
goal challenge. The difference between these two scripts is the way of shooting
and approaching. Our attacker has some various shots in games. It chooses one of
them depending on the situation. However it shoots only one way in the penalty
shoot-out. The shoot is very strong and carries the ball far. In addition the player
approaches the ball more carefully in penalty shoot-out than in games. In penalty
shoot-out, this is because the attacker needs to catch the ball more surely.

Our attacker was designed with if-then rule. Last year it was designed based
on a state transition method. This method, however, often causes bugs in script
codes. This year our goalie script was written with a if-then rule method. The
if-then rule is very simple and has less incidence of bugs. We describe these details
in the following sections.

The attacker has the following five processes. We named them as “search”,
“approach”, “ shoot”, “ support”, and “localize”. Each of them is used depending
on the situation.

6.1.1 Search

The attacker searches the ball in the “search” process. When the attacker can not
see the ball, the “search” process is called to find the ball. This process consists of
the following behaviors.

• “SearchWalk”: The attacker searches the ball with walking from one side of
the field to the other.

• “SearchDown”: The attacker searches the ball under its head by swinging its
head.

• “SearchTurn”: The attacker searches the ball with turning right or left.
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We improved the method of searching the ball. When the attacker lost the ball,
it looked near and far at first in the last year. If it was not able to find the ball
even though this process had been over, it turned to the rotative direction where the
attacker had seen the ball last time. This year the attacker turned after swinging its
own head only once.

6.1.2 Approach

The attacker approaches the ball enough to shoot or catch it in the “approach”
process. When it watches the ball, the “approach” process is called.

6.1.3 Shoot

The attacker tries to score in the “shoot” process. When the attacker is near the ball
enough to shoot or catch it, this process is called.

If the attacker can catch it easily, it tries to do. After catching it, the attacker
turns to the direction of the opponent goal. If it can see the opponent goal or the
regulation time for continuous catching is over, the attacker shoots it.

If the attacker can not catch easily, it tries to shoot it. The attacker has various
shots, and it chooses the best shot for scoring.

6.1.4 Support

We built a communication system for supporting the other teammates. The system
allows the players to communicate with each other. They can tell each other some
information: their own position, the relative ball position, and the sending time.

We developed two strategies, “active” and “passive”, and made our attackers
switch their strategy. In case that any other teammate is not chasing the ball, the
attacker plays with the “active” strategy. It allows the attacker to use the “search”,
“approach” and “shoot” processes. Otherwise, that is, in case that other teammate
is the nearest to the ball and chasing it, the attacker plays with the “passive” strat-
egy. It allows the attacker to use only the “search” and “support” processes. The
attacker can not call the “approach” process so that it does not clash with other
teammates. This strategy system allows only one attacker to approach the ball.
However our defender and goalie do not use the system. This is because they must
clear the ball even if they have the risk of clashing other teammates.

When the “support” process is called, the attacker does not approach and
moves to a supporting position which is between the ball and the opponent goal.
The attacker stays in the supporting position until other player moves the ball.

6.1.5 Localize

This year, our attacker is always localizing own position in games, because stop-
ping for the localization wastes its playing time. However, some clashes still often
bring the attacker misunderstanding of its own position localization, and it can not
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estimate its own position correctly when it is in the “penalty” state. In that case, the
“ localize” process is called expressly. When it is called, the attacker stops walking
and estimates its own position by looking around carefully.

6.1.6 Problems for next year

We have the following problems that we try to solve next year.

The accuracy of catching and shooting

This year, when the player found the ball, the player approached, caught, and shot
it. However, the player often failed to catch the ball, and was not able to shoot it in
important occasions. Therefore, we need to improve the catching motion and the
shooting motion. As a strategy, we need to adjust the condition of switching the
“shoot” process and the “approach” process.

The avoidance of the penalties of illegal defender

As to illegal defender, we designed the script so that the defender should not enter
the own penalty area. However, we did not designed this script for the attacker,
because we had thought that the attacker rarely entered in its own penalty area.
As a result, the attacker often entered the own penalty area and was received the
penalty. Therefore, we need to apply this script to the attacker next year.

The improvement of supporting each other

We need to improve the supporting system. This year, the player switched the
“active” and “passive” strategies depending on the distance of the ball. In the
“passive” strategy, the player only stays in the place. Therefore, the player needs
to do more sophisticated action, e.g., it continues to move dynamically to turn any
situation to its advantage.

6.2 Defender

The strategy of our defender is almost the same as that of the attacker. However,
the defender should be more defensive than attackers. We devised the strategy of
the defender. The detail is as follows.

First, the defender does not go out over a half line. Second, when the ball
is an opposite side, the defender stays at its own position. Third, when the ball
comes into the defender’s face, either the “guard" or the “clear" process is called
depending on the situation.
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Figure 6.1: The strategy of Attacker

6.3 Goalie

Our goalie’s strategy is separated into four processes: “search”, “ position”, “ guard”,
and “clear”. First, our goalie is positioned at the center of its own goal in the “po-
sition” process, because it is the most important for the goalie to be in front of its
own goal. Second, the “search” process is called, if the goalie does not see the
ball. The goalie must recognize the current position of the ball to respond to the
movement of it. Next, the goalie saves in the “guard” process. An opponent would
shoot the ball at the chink of the goal. Therefore, the goalie can not defend its own
goal only by standing in front of our goal. The goalie must move left or right to
fill up the chink and defend its own goal by opening the legs. Finally, the goalie
approaches the ball and kicks it out in the “clear” process. In case there is the ball
inside the penalty area, the goalie must clear it courageously. This year the “guard”
and “clear” processes are especially improved . Each process is described in detail
in the following.

6.3.1 Position

The “position” process (cf. Fig. 6.2a) is the most important for the goalie. If the
goalie is not in front of its own goal at a crucial moment (e.g. when an opponent
shoots the ball to our goal), it will be equal to giving an opposing team one point.
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Figure 6.2: The circles are situations and the squares are behaviors. a) The situ-
ations and behaviors in the “position” process. b)The situations and behaviors in
the “search” process .

When the goalie is not in a right position, this situation is called “not-positioning”.
In the situation, the goalie with the behavior “positioningSearch” moves in front
of its own goal and does not collide with one of the goal posts. If the goalie finds
the ball or is near it, the goalie continues to move in front of its own goal. This is
because it is the most important for the goalie to be in front of its own goal. When
the goalie is almost at the right position, this situation is called “positioning”. In
the situation, the goalie walks to a more suitable place (e.g. when there is the ball
on the left side, the goalie moves to the left a little.) depending on the position
of the ball with the behavior “guard_position”. When the goalie does not see the
ball, the “search” process is called. When the ball is near enough to approach it,
either the “guard” or “ clear” process is called in the same manner as the “search”
process.

6.3.2 Search

The “search” process (cf. Fig. 6.2b) is called when the goalie is in its own position
and does not see the ball. In a situation “turn-robot” the goalie searches a direction
which it had seen the ball last. In the situation, the goalie turns to the direction with
the behavior “SearchTurnRight” or “ SearchTurnLeft”. In a situation “search-for-
ball” the goalie stays in front of its own goal and searches the ball with swinging
its head. The “search” process is terminated when the goalie finds the ball. After
that, in the case that the ball is near to the goalie, either the “guard” or the “clear”
process is called. In the other case, the “position” process is called.

6.3.3 Guard

The “guard” process (cf. Fig. 6.3a) is called only when the goalie in front of the
goal is watching the ball. Last year, although the ball moves slowly, the goalie
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Figure 6.3: a) The situations and behaviors in the “guard” process. b) The situa-
tions and behaviors in “goalie-clear” process .

is designed to guard when the ball is near. This year, however, the goalie is de-
signed to start the guard motion depending on the distance and speed of the ball
and to stand up after its motion. As a result, the goalie does not break the Illegal
Defense. In a situation “play-guard-motion” the goalie saves with the behavior
“guard_combo”, which is a fusion of the behavior “guard_down” and “guard_up”.
In the behavior “guard_down” the goalie saves depending on the speed and posi-
tion of the ball. When an opponent shoots the ball to the left or right side of the
goal, the goalie moves left or right and opens the legs to save with the behavior
“guard_down”. After that, in the behavior “guard_up” the goalie stands up. Then,
there are two ways to stand. If the ball is near the goalie, the goalie pushes the
ball with the legs. Otherwise, the goalie stands up quickly. In a situation “guard-
during-approaching”, the goalie saves with the behavior “approachguard_combo”,
as well as the behavior “guard_combo”, but it is called only when the goalie is ap-
proaching the ball and when the opponent kicks the ball.

6.3.4 Clear

The “clear” process (cf. Fig. 6.3b) is called only when the ball is near to the
goalie or its own goal. In a situation “approach-ball”, the goalie in front of the
goal approaches the ball with the behavior “approachCatch”. When the goalie is
near enough to kick the ball, in a situation “clear-ball”, the goalie clears it out
of a penalty area with the behavior “shootAfterCatch”, which is the same as our
attacker. After clearing it, the “position” process may be called, because the goalie
may be far away from its own goal. If the goalie could detect an opponent, it can
go to clear the ball over the penalty area without fears.
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Figure 6.4: Above “goalie” expresses the general goal keeper script.
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6.3.5 Conclusion

The goalie’s script is such as Fig. 6.4. In the “goalie”, all the processes (“position”,
“search”, “ guard”, and “clear”) are included. It is possible to divide them into two
groups. One group is “ball-not-seen” which consists of situations which the goalie
does not see the ball. The other is “just-ball-seen” which consists of situations
which the goalie sees the ball. In the former, if the goalie is in front of the goal and
its situation is “search-for-ball”, the goalie tries to find the ball with the behavior
“searchBall”. When the goalie finds the ball, its situation changes to the situation
“approach-ball” or “ play-guard-motion”. In the latter, all the processes except
process “search” are called depending on the position, the speed of the ball, and so
on. When the goalie does not see the ball, the situation of the goalie is changed to
the group “ball-not-seen” at once.

6.3.6 Problems for Next Year

We must improve our positioning skills. For instance, there is a possibility that the
goalie loses its own position by colliding with the edges of its own goal. In order to
avoid this trouble, we need to develop a collision detection system by monitoring
its joint angles, our positioning system to avoid colliding with the edges, a more
robust localization system, and so on. In the “position” process, the goalie is in
the center of the goal this year. However, we hope that the goalie is designed to
position with the information of the ball. For example, the goalie walks a few steps
to the side the ball is in, because the goalie more effectively fills up a chink of the
goal and saves. In the “search” process, the ball sometimes is in a blind spot of the
goalie, nevertheless it is in front of its own goal. For example, it is possible that the
ball is at the back of the goalie. The nearer to the goal the goalie is, the smaller the
blind spot in front of the goal is. Therefore, the behavior is needed to let the goalie
step back to its own goal while searching for the ball. The “guard” process needs
to estimate the speed and direction of the ball more robust. In the “clear” process,
when the ball is between the goalie and its own goal, it is necessary that the goalie
must not shoot toward its own goal but clear the ball out of the penalty area.
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Chapter 7

Shot Motions

This year, we prepared the six kinds of shootable areas, i.e. near left(NL), near
center(NC), near right(NR), far left(FL), far center(FC), and far right(FR) areas
from its view point, in front of a robot as shown in Figure 7.1, so that it can make
a precise shot even though it approaches a ball roughly. In each shootable area, the
five kinds of shots for left, left oblique, forward, right oblique, and right directions
were allotted. In a word, We used the5 × 6 = 30 kinds of shots in all except for
shots after catching.

Figure 7.1: The six kinds of shootable areas in front of a robot.

7.1 Shot with its chest

This shot is for the forward direction on the FL, FC, and FR areas. When a robot
performs this shot, it throws out its whole body ahead as shown in Figure??. This
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shot has the advantage of high hitting ratio by using large area of its chest. How-
ever, this shot also has the disadvantage of a concentrated load for servo motors of
its front legs, because the robot must bear its full weight with its front legs which
bent in a L-shape as shown in Figure 7.2(b). We do not want to make robots to
perform such a high-loaded motion, because the robots, that is AIBOs, were unfor-
tunately halted in production by Sony. Therefore, we made them shoot a ball after
catching it, as described in Section 7.4, whenever possible.

(a) Default pose (b) Chest shot

Figure 7.2: The motion of the shot with its chest.

7.2 Shot with its leg

This shot is for the left, left oblique, right oblique, and right directions on the
NL, NC, and NR areas. When a robot performs this shot, it twists its whole body
and brandishes its leg as shown in Figure 7.3. That is because AIBOs do not
have enough strong servo motors for their joints to kick a ball far away by only
brandishing their left or right front leg.

7.3 Shot with its head

This shot is for the following two purposes. One is to move a ball toward the
forward direction on the NL, NC, and NR areas, and the other is to move it toward
the left, left oblique, right oblique, and right directions on the FL, FC, and FR
areas. We define the former type of shot as Type1 and the latter type of shot as
Type2.
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(a) Expand the front leg
which kicks the ball

(b) Stretch its front
leg and twist its whole
body

(c) End of the shot

Figure 7.3: The motion of the shot with its leg.

7.3.1 Type1 (when the ball is near)

This shot is one of the most difficult shot to make. That is because simply swinging
only its head does not cause that the shot can not move the ball far away. The robot
must use its whole body for a strong shot. When the robot performs this shot, it
put its weight on the ball by raising its body and stretching all the legs as shown
in Figure 7.4. The ball runs straightforward because it passes through between its
front legs.

The robot tends to slip and moves backward when it stretches the front and rear
legs, because its center of gravity is located anteriorly. We must make adjustments
to the shot motion so that its legs can catch the field firmly by sticking the pads
of its front legs and the claws of its rear legs. If the field has a strong friction and
does not slip easily, we must make adjustments so that its front legs can slide on
the field, because there is a strong possibility that the pads of its front legs catch
the field too much and the servo motors of its legs are damaged.

The robot can frequently lose its balance and fail to hit the ball when it makes
this shot in a soccer game, even though we make adjustments firmly by using our
motion editor. That is because the shot motion in the adjustment time is different
from that in a soccer game. One of the factors causing this difference is that the
start joint angles of each leg in walking is different from that in staying. Another
is that the shot motion has few processing time in a soccer game, since image
processing takes a lot of the calculation time.
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(a) Raise body with its legs (b) Stretch its legs and drop down its body

Figure 7.4: The ball is controlled with a stretch of the front legs.

7.3.2 Type2 (when the ball is far)

When the ball is far, it is necessary to move its body forward. We made the shot
that the robot thrusts out and swings down its head in the motion of Type1.

7.4 Shot after catch

We made the motion to catch the ball before shots. This motion puts the ball on
the sweet spot where the robot can made the most powerful shot.

We used the chest shot andAbeshot as shot after catching the ball. The chest
shot is almost the same motion described in Sec 7.1 except for not bending its
front legs. Therefore, the concentrated load for servo motors of front legs is small.
Because the robot only pushes the ball with its chest, this shot motion finishes very
fast.

Abeshot can move the ball from the one end line to the other end line of the
field. The details are written in our technical report of last year [16].
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Chapter 8

Technical Challenges

8.1 The Open Challenge

Our team demonstrated an autonomous learning method in order to acquire ball
trapping skills in this year. These skills involve stopping and controlling an on-
coming ball and are essential to passing a ball to each other. We first prepared the
training equipment shown in Fig. 4.3, and then we showed that one robot can ac-
quire trapping skills on its own and that two robots can acquire them more quickly
by sharing their experiences. Our presentation were highly evaluated and took sec-
ond place in this challenge. The details of our method are given in our paper [17].

8.2 The Passing Challenge

Our robots for the passing challenge were programmed to utilize trapping skills
that they practiced and acquired in advance. However, our robots did not work well
because we could not quite implement other skills such as dribbling and teammate
recognition in time, and so the score of our team was unfortunately zero.

8.3 The New Goal Challenge

This year, in the new goal challenge, we use the same script for the penalty-
shootout. We designed the script that the player was able to get a point by only
one shot. The strategy of this script is the following.

First, when the player finds the ball, the player tries to approach and catch it.
Next, when the player was able to catch the ball, the player turns with holding
the ball until seeing the opposite goal ahead. Finally, the player shoots the ball
straightforward.

As to recognition of a new goal, we did not especially consider anything. The
shape of the goal was not a problem because the player recognized a yellow square
as a goal. Our routine can recognize both Fig. 8.1 and Fig. 8.2. It does not become
a big difference for our routine.
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Figure 8.1: The vision of AIBO with normal goal

Figure 8.2: The vision of AIBO with new goal

In the practice, the player was able to get points. However in the convention,
the shot was not able to reach the goal nevertheless the player was able to shoot.
This is because the direction of the shot was not steady and the ball did not reach
the goal of the deep turf. In addition, the player was not able to step aside from the
opposite player. This is because our player recognition routine was not exact.

Therefore, we were not able to get as much as one point.
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Chapter 9

Conclusion

The team Jolly Pochie entered the finals in the RoboCup Japan Four-legged League
2006. In the RoboCup Four-legged League 2006, our team won one game and lost
one game in the first round robin pool.

Our mainly improvements of this year are three things. The First is more ac-
curate object recognition of our vision system by improving our object recognition
algorithms and our learning tool generating color tables. The second is more ro-
bust estimation of ball’s location by utilizing a new localization technique. The
third is work saving for developing successful ball trapping skills by utilizing an
autonomous learning technique for the skills.

We will continue the development of our object recognition routine and the
combination of our soccer simulator and on machine learning techniques.
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