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Chapter 1

Introduction

The team “Jolly Pochie [dz̧óli·pót
∫
i:]” has participated in RoboCup Four-

Legged League since 2003. In the last two years, the team consisted of the
faculty staff and graduate/undergraduate students of department of infor-
matics, Kyushu University [1]. This year it becomes a united team with
Tohoku University.

Faculty members
Ayumi Shinohara and Akira Ishino

Graduate Students
Jun Inoue, Hayato Kobayashi, Narumichi Sakai, Kazuyuki Narisawa,
Satoshi Abe, and Akihiro Kamiya

Undergraduate Students
Tsugutoyo Osaki, Tetsuro Okuyama, Shuhei Yanagimachi, and Yuki
Matsumoto

Our research interests mainly include machine learning, machine discov-
ery, data mining, image processing, string processing, software architecture,
visualization, and so on. RoboCup is a suitable benchmark problem for
these domains. For this year, we utilized an embedded scripting language
in order to accelerate the development process, and established a simulator
that can execute robot scripts without modifying the script. In addition, we
are developing a new localization technique for the ball location.

The rest of this report is organized as follows. Chapter 2 introduces our
original framework, into which we embedded scripting language Lua. Chap-
ter 3, 4, and 5 describe motion modules, vision modules, and other modules,
respectively, that we developed in this year. Chapter 6 describes our strat-
egy system, Chapter 7 illustrates soccer strategies used in the system, and
Chapter 8 shows shoot and pass motions used in the strategies. Chapter 9
shows the bots used for playing soccer, capturing images, and so on. Chap-
ter 10 illustrates our tools that have been developed so far. Chapter 11

5



describes the results of the technical challenges in RoboCup 2005. Finally,
Chapter 12 presents the conclusion of this report.
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Chapter 2

Framework

This chapter describes the architecture of Jolly Pochie. We present the
original framework for AIBO programming. It consists of a base system
and many modules which are easily exchangeable with other modules.

2.1 JPObject

In the operating system Aperios, which was developed by SONY and runs
on AIBO, multiple objects are processed concurrently, communicating with
each other. The software development kit OPEN-R for Aperios defines a
special object OVirtualRobot. OVirtualRobot is a kind of proxy object for
AIBO. By communicating with OVirtualRobot, we are able to move joints,
to capture images from the camera, to send and receive data with other
AIBO’s from wireless LAN, and so on.

We use several Aperios objects, which are sub-classes of OObject, in our
soccer robot. PowerMonitor and TinyFTPD are come from the OPEN-R
distribution, GameController is from RoboCup community, and TCPServer,
UDPServer, and JPObject are implemented by us.

JPObject plays a main role in Jolly Pochie, which has no function in
itself, but manages many modules and communicates with other objects
(Fig. 2.1). Most of events on a robot, e.g. action events, camera events,
sensor events, network events, and so on, gather to JPObject. Then JPOb-
ject assigns these events to appropriate modules. On the other hand, actions
which occurred on modules are translated by JPObject and communicate
to OVirtualRobot.

2.2 JPModule

Modules are managed by JPObject and provide various functions for moving
joints, capturing camera images, detecting objects, localizing self-position,
and so on. Each module is designed for an atomic function and is developed

7



O V i r t u a l R o b o t
J P O b j e c t G a m e C o n t r o l l e r

P o w e r M o n i t o rT C P S e r v e rU D P S e r v e r T i n y F T P D

Figure 2.1: JPObject and other programs.

independently. Combining suitable modules, we can get robots for various
purpose easily. Someone improves a certain module, others receive the bene-
fits automatically. When an experimental module is developed by modifying
from another module, the original module is left as it was, and any other
developer need not to concern about the modifications. The module system
of Jolly Pochie makes the development of robot programming easy. In this
year 2005, more than 200 modules were created. (Unfortunately, about half
of them were failed ones.)

The base class of modules is JPModule. JPModule registers itself in
JPObject by the constructor. The only thing which a module has to do
is to define a default constructor in which the constructor of JPModule is
called with the module name. Once the modules are registered, JPObject
call these modules when an event has occurred. For such a purpose, JP-
Module have four methods: init(), start(), stop(), and destroy() which cor-
respond to JPObject::DoInit(), JPObject::DoStart(), JPObject::DoStop()
and JPObject::DoDestroy(), respectively.

The following program is a simple example of the module. The Hel-
loWorld module says “Hello world!” in the monitor console at start-up, and
says “bye” at end.

---HelloWorldJPM.h

8



#include "JPModule.h"

class HelloWorldJPM : public JPModule {
public:
HelloWorldJPM();
virtual ~HelloWorldJPM() {}
virtual void start();
virtual void stop();

};

---HelloWorldJPM.cc
#include "HelloWorldJPM.h"
#include "JPSyslog.h"

HelloWorldJPM::HelloWorldJPM() : JPModule("HelloWorldJPM") {}

void
HelloWorldJPM::start() {
JPSysDebug(("Hello world!\n"));

}

void
HelloWorldJPM::stop() {
JPSysDebug(("bye"));

}

The above example also shows that no OPEN-R functions and data types
are used in the module directly. We hides the functions and types in OPEN-
R. Instead of these, we provide many useful functions which use standard
C++ types, e.g. string, vector, and so on. Excluding OPEN-R functions
and type from module programs makes it possible to debug and test in the
ordinal environment, with unit test libraries, and without AIBO’s.

There exist some specific base modules for events of OVirtualRobot
(Fig. 2.2). JPActionModule is the base module for action and has a method
actionReady called every 80ms for transferring joint angles to OVirtual-
Robot. JPSpeakerModule is for speaker and has a method speakerReady.
JPSensorModule is for sensor and has a method sensorNotify. JPCamer-
aModule is for camera and has a method cameraNotify called every 40ms
for transferring data of CCD-camera from OVirtualRobot. JPTCPMod-
ule is for tcp communication and has methods tcpNotify and tcpReady.
JPUDPModule is for udp communications and has methods udpNotify and
udpReady. JPMindModule is a slightly special module, which does not cor-

9



respond with any events of OVirtualRobot. JPMindModule has methods
mindNotify which is called after cameraNotify and gameNotify for events of
GameController. J P M o d u l em o d u l e N a m e+ i n i t ( )+ s t a r t ( )+ s t o p ( )+ d e s t r o y ( )J P O b j e c t+ m o d u l e N a m e+ r e g i s t M o d u l e ( )+ r e g i s t A c t i o n M o d u l e ( )+ r e g i s t S p e a k e r M o d u l e ( )+ r e g i s t S e n s o r M o d u l e ( )+ r e g i s t C a m e r a M o d u l e ( )+ r e g i s t T C P M o d u l e ( )+ r e g i s t U D P M o d u l e ( )+ r e g i s t M i n d M o d u l e ( )

O O b j e c t+ D o I n i t ( )+ D o S t a r t ( )+ D o S t o p ( )+ D o D e s t o r y ( ) J P A c t i o n M o d u l e+ a c t i o n R e a d y ( e v e n t ) J P S p e a k e r M o d u l e+ s p e a k e r R e a d y ( e v e n t )
J P C a m e r a M o d u l e+ c a m e r a N o t i f y ( e v e n t ) J P U D P M o d u l e+ u d p N o t i f y ( e v e n t )+ u d p R e a d y ( e v e n t )

J P M i n d M o d u l e+ m i n d N o t i f y ( e v e n t ) J P T C P M o d u l e+ t c p N o t i f y ( e v e n t )+ t c p R e a d y ( e v e n t )J P S e n s o r M o d u l e+ s e n s o r N o t i f y ( e v e n t )
Figure 2.2: JPObject and JPModules.

By inheriting one of the base module class and implementing the spe-
cific methods, we can create modules which use various functions of AIBO
(Fig. 2.3). In other words, JPObject does nothing but manages modules,
and everything is processed by the modules.

2.3 Embedding Lua

Using compiled languages such as C++, it takes an awfully long time to ad-
just the parameters of complex programs designed for robots to play soccer.
The reason is that both sensor input and actuator output can hardly be pre-
cisely predicted, since our robots act in the real world. It is very difficult to
make our robots behave as we expect without a lot of trial and error. Thus,
many advanced teams have adopted scripting languages into their systems.
Embedding scripting language dramatically improves the efficiency of devel-
opment, because we do not have to recompile the source code, and because
we can update the scripts at runtime without rebooting the robot.
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O V i r t u a l R o b o t
J P O b j e c tA c t i o n S p e a k e r S e n s o r C a m e r a T C P U D P M i n d

T C P S e r v e rU D P S e r v e rG a m e C o n t r o l l e r

J P B o d y V i s i o n 7 R e m o t eC o n t r o l 7 U D P C o m 2T o u c hS e n s o r L u a S t a t eM i n dp l u g i n

B a s i cM o t i o n 6 S h a k i n gT a i lH e a dK i n e m aD e t e c tS t a t u sD i s p l a y C D TB o xT a b l e 6 D e t e c tB a l l 9 D e t e c tS t a t u s B a l lM C LI m p l 3S e l fM C L 2 R CC a p t u r e 3R CP r o fi l e I m a g eS e r v e r 3P o w e rM o n i t o rP S DS e n s o rA c c e lS e n s o r

Figure 2.3: JPModules are plugged in the JPObject.
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When we try to embed a scripting language into our framework, a prob-
lem often arises to bind C++ modules (i.e. to register C++ classes in order
to use member functions of it in Lua scripts). If we bind in the common
base program of our framework, we need likely to rewrite the code of binding
whenever we replace the modules. In addition, if we bind in each module,
we might have to rewrite the scripts, or it might become difficult to create
a new module, whenever we replace the modules.

In this section, we show how to embed scripting language Lua [7] in our
framework. Thanks to the excellent mechanisms supplied by Luabind [5],
it becomes quite easy to bind C++ modules in this system. Thus, our
framework enables us to create many modules easily and quickly without
the difficulty of the bindings. As a matter of course, the scripts can always
access to the methods of the modules. Therefore, we can develop each low-
level module separately and independently, while some other teammates are
writing and adjusting high-level strategetic scripts. This is quite advanta-
geous to the development for RoboCup competition, because even a new
member of the team, who is not familiar with practical C++ programming
nor understand the whole complicated system developed so far, can con-
tribute to adjust the parameters, and to examine another strategy, and so
on. Through these experiences, she/he will understand the whole system
gradually, and be prepared to join the development of the core parts of it.

2.3.1 Lua

Lua [7] is a scripting language designed to embed into C/C++. It has a nice,
simple, powerful syntax, and a small scripting engine (parser, compiler, and
interpreter), as well as being easily embedded. Therefore, we could easily
embed Lua in the Jolly Pochie Framework. we could get used to write Lua
scripts a short time later.

The syntax of Lua is similar to that of Pascal. The following is an
example of the function sum() that takes a variable number of integers as
arguments, and returns a summation of the arguments. We had better
execute local declaration for the variable s, because variables are normally
regarded as global variables.

function sum(...)
local s = 0
for i=1, arg.n do

sum = s + arg[i]
end
return s

end

Lua has a flexible table structure that can represent ordinary arrays,
symbol tables, sets, records, graphs, trees, and so on. Since functions are
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first class values in Lua, we can represent the structure that is like a class in
C++. In addition, we can make a subclass that derives the class by using a
metatable. The metatable is an ordinary table that defines the behavior of
a table.

The following is an example of expression of classes, and inheritance of
the classes using the metatable. In the example, we create the class AIBO,
and the subclass ERS7 of the class AIBO. The function setmetatable(tbl,
mtbl) sets exploring not only the field of the table ERS7, but also the field of
the table AIBO, when accessing the index of the table ERS7. Thus, the mem-
ber function ERS7:getColor() returns the value "white". ERS7:getColor()
is syntax sugar for ERS7.getColor(ERS7), and ERS7.getColor is also syn-
tax sugar for ERS7["getColor"].

AIBO = {
color = "",
getColor = function(self)

return self.color
end

}
ERS7 = {

color = "white"
}
setmetatable(ERS7, {__index = AIBO})

2.3.2 Luabind

We use Luabind [5] to embed Lua in our framework, although Lua can be
embedded using only Lua API. The reason is that it is difficult to bind C++
classes using only Lua API. We will have to define global wrapper functions
for the member functions of the classes, and allow instances of the classes
to access the member functions by using metatables.

Luabind is a library that helps you create bindings between C++ and
Lua. We do not have to write the annoying processes to bind Lua, because It
is implemented utilizing template metaprogramming to automate the pro-
cesses in compiling time. Luabind supports class inheritance, overloaded
functions, overridden virtual functions, and so on.

Now, we show an example of binding a class in C++ side, and using the
class in Lua side. For example, we create the sample class AIBO in C++ as
follows.

class AIBO {
int speed;

public:
AIBO(int s) { speed = s; }
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void walk() { cout << "walk " << speed << endl; }
};

We can easily bind the class AIBO defined above.

module(L) [
class_<AIBO>("AIBO")
.def(constructor<int>())
.def("walk", &AIBO::walk)

]

After binding, we can instantiate the class AIBO in Lua side as follows.
We can treat Lua classes in a similar way to C++ classes, but we must
use the operator colon (:) instead of the operator dot (.) or arrow (->) to
access member functions and variables of the classes. Since our framework
needs to instantiate modules (classes) in C++ side, we must register the
instances for Lua to operate the modules. This method will be taken up at
length in the following section.

aibo = AIBO(100)
aibo:walk()
doping_aibo = AIBO(200)
doping_aibo:walk()

2.3.3 Calling Lua Functions

Lua scripts should be called in mind modules, because mind modules create
strategies to play soccer in the RoboCup competition. We embed Lua in
our framework so that a mind module can load a Lua script, and call Lua
functions in the script. If we specify the script name as Foo in a configuration
file, the mind module loads Lua script file start.lua in directory Foo when
the mind module is instantiate. There are two special functions init() and
mindNotify() in our robot scripts. The Lua function init() is called only
once after the mind module are instantiated. We can initialize a strategy
in the function init(). The Lua function mindNotify() is called in the
C++ member function mindNotify() in the mind module. We can write
a strategy in the function mindNotify(), using C++ functions in other
modules.

We can quite easily call a Lua function using Luabind. In order to call
the Lua function mindNotify() that has no argument, and returns nothing,
we have only to describe as below. The variable JPLua::L is a pointer of the
structure that register Lua status.

luabind::call_function<void>(JPLua::L, "mindNotify");
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2.3.4 Binding C++ Modules

In order for Lua scripts to call some methods in other C++ modules, it is
necessary to bind the modules on the C++ side. It means to register an
instance of the modules, as well as information of the classes and member
functions. For instance, in order to register a class ExampleModule with
public member functions method1(const char* str) and method2(int x,
int y), we have only to add the description as follows, in the function
init() in C++ modules.

module(JPLua::L) [
class_<ExampleModule>("ExampleModule")
.def("method1", &ExampleModule::method1)
.def("method2", &ExampleModule::method2)

];
get_globals(JPLua::L)["exampleModule"] = this;

The bottom line is to register the instance, assigning the this pointer of
the class ExampleModule to the variable "exampleModule" on the Lua side.
After the registration, we can call the function in Lua scripts as follows.

exampleModule:method1("hello")
exampleModule:method2(10, 20)

Luabind can register information of class inheritance. We need not bind
in the class AdvancedExampleModule inheriting the class ExampleModule as
follows. Therefore, we need not rewrite the script even if we change those
modules. The same is true for the compatible modules in terms of binding
(e.g. ExampleModule2 having the same methods that ExampleModule has).

module(JPLua::L) [
class_<AdvancedExampleModule,

ExampleModule>("AdvancedExampleModule")
];
get_globals(JPLua::L)["exampleModule"] = this;

2.3.5 Specification of Our Robot Scripts

After embedding Lua, high-level process can be described in Lua scripts.
When creating scripts, we have to understand the following two functions
init() and mindNotify() on the Lua side. The function init(), where
we can initialize variables, is called only once at the beginning. The func-
tion mindNotify() is called by the member function mindNotify() in mind
modules, that is to say, called every 40 ms. Therefore, a strategy can be
changed depending on input from CCD-camera.

The following example is a simple script that enumerates nonnegative
integers, starting with 0 and incrementing by 1.
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function init()
i = 0

end

function mindNotify()
print(i)
i = i + 1

end

Of course, we can use C++ functions and variables that were binded by
the method of the previous section. Table 2.1 shows most of the available
C++ functions and variables in Lua scripts, which we have been developed
so far. There are also convenient libraries using these C++ functions and
variables in Lua side. We can create robot scripts by good use of the Lua
library and the C++ functions and variables. The following is another
example of a robot script that make our robot move toward a ball, slow
down if it is near to 500 mm, and come to a stop if it is near to 50 mm.

require "Vision.lua"
require "CMotion.lua"

function init()
end

function mindNotify()
visionLib:detectBall()
cmotion:watchBall()

local dist = visionLib:getBallDistance()
if dist > 500 then
cmotion:walk(1.0, 0, 0)

elseif dist > 50 then
cmotion:walk(dist/100, 0, 0)

else
end

end

The function visionLib:detectBall() performs the process that rec-
ognizes the ball, and the function cmotion:watchBall() responds to swing
the head to keep watching the ball. The function cmotion:walk(f,l,r) per-
forms the parametric movement of our robot specified by three parameters
ranging between -1 and 1 : forward direction f , leftward direction l, and
clock-wise rotation r.
Table 2.1: Most of the available C++ functions and variables in Lua scripts.
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instance available functions and variables

faceLED setState(bitvector)

headLED setState(bitVector)

tailLED setState(bitVector)

touchSensor clickedBackFront(),
clickedBackMiddle(), clickedBackRear(),
clickedHead(), clickedBody(),
clickedBasic(t), pressedBackFront(t),
pressedBackMiddle(t),
pressedBackRear(t), pressedHead(t),
pressedBack(t), pressedChin()

soundPlayer registWavFile(soundname, filename),
playSoundOnce(soundname),
changeVolume(volume),
playSoundRepeat(soundname),
playSoundStop()

visionBase landmarksDetect(), ballDetect(),
getLeftLineSlant(),
getRightLineSlant(),
getLeftLineIntercept(),
getRightLineIntercept()

basicMotion loadMotion(motionname, filename),
playMotion(motionname, state),
playMotionLoop(motionname,
state), stopAction(),
cancelAction(), swingHead(tilt1,
pan, tilt2, nextState),
setHeadDeltaTilt1(deltaTilt1),
setHeadDeltaPan(deltaPan),
setHeadDeltaTilt2(deltaTilt2),
setHeadDelta(deltaTilt1, deltaPan,
deltaTilt2), stopSwingHead(),
cancelSwingHead(), loadGait(gaitname,
gaitfile, odparamfile),
playGait(), playGaitLoop(),
clearGaitsource(gaitname, rate),
setGaitSource(), setGaitFirstFlag(flag)
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instance available functions and variables

detectBall getL(), getPan(), getTilt(),
getAdvisablePan(), getAdvisableTilt(),
getInSightTilt1(), getInSightPan(),
getInSightTilt2()

ballMCL getX(), getY(), getPan(),
getDistance(), isValid(), addXYV(x,
y, dx, dy), shiftXYT(x, y, theta),
update(), nupdate(n)

mcLocalization getX(), getY(), getTheta(), update(),
nupdate(n)

udpCom udpSay(words)

psdSensor getHeadPsdValue(),
getHeadNearPsdValue(),
getHeadFarPsdValue(), getBodyPsdValue()

detectStatusDisplay update()

gameControlData firstHalf, kickOffTeam,
secsRemaining, dropInTeam,
dropInTime, myTeam.teamColour,
myTeam.score, myTeam.player1.penalty,
myTeam.player1.secsTillUnpenalised

detectStatus ballDistance, ballPan, ballTilt

accelSensor getAccelX(), getAccelY(), getAccelZ(),
getValueX(i), getValueY(i),
getValueZ(i), getPosture()

headKinema setHeight(frontHeight,
rearHight), getHeight(),
setHeadAnglesToWatchThePosition(X, Y,
Z, tilt1required)
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Chapter 3

Motion

3.1 Action

In OPEN-R SDK, we can move joints by sending data, for example, 0, 10, 20,
15, 5, -5, ..., to OVirtualRobot. The number of the joint data is not fixed but
we decided that the number is 10 for smooth moving and double buffering
is also used. One frame of the data corresponds with 8ms. Accordingly, the
time cycle of actionReady is 80ms, which is twice of the one of cameraNotify
and mindNotify.

LEDs are also treated as joints in OPEN-R SDK. There are three kinds
of LEDs in AIBO: face LEDs, back LEDs, and ear LEDs. We decided the
number of frames for face and back LEDs is the same as joints, 10, but the
number of frames for ear LEDs is 1.

However, strategic routines should not care about these low-level mech-
anisms. The strategic routines do not indicate the next angles of joints but
decide a next action such as walk, turn, and shoot. We therefore define
an action is the sequence of joint data, which are given preliminarily or
calculated as needed.

3.1.1 JPAction

The base class of actions is JPAction. There exist seven subclasses of
JPAction for each part of the AIBO’s body. JPLegsAction is for legs. JP-
HeadAction is for a head. JPEarAction is for ears. JPTailAction is for a
tail. JPFaceLEDAction is for face LEDs of ERS-7. JPHeadLEDAction is for
ear LEDs of ERS-7 and face LEDs of ERS-210/220. JPTailLEDAction is for
back LEDs of ERS-7 and tail LEDs of ERS-210/220. Finally, JPHeadLegs-
Action is a synchronous action for a head and legs such as shoot. These
classes are abstract and, of course, do nothing. Concrete actions, walking,
shooting, and so on, are described later.

Actions are processed by JPBody, which is the subclass of JPActionMod-
ule (Fig. 3.1). JPBody treats the above actions without JPHeadLegsActions
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independently. Basically, once an action starts to be processed, another ac-
tions for the same type are kept waiting until the current action has finished.
JPBody keep only one action for each type of actions. When an action A
is waiting, another action B for the same type of action is coming, JPBody
discards the action A and now keeps the action B waiting. On the other
hand, let C be an action of different type from the action A. In this case,
the action A is not discarded and the action C is processed at once or also
is kept waiting.

JPHeadLegsAction is processed in slightly different way. JPHeadLegs-
Action, of course, waits for finishing the previous JPHeadLegsAction. More-
over, JPHeadLegsAction uses a head and legs and consequently waits for
finishing JPHeadAction and JPLegsAction. We give a priority for JP-
HeadLegsAction over JPHeadAction and JPLegsAction. If JPHeadLegs-
Action, JPHeadAction, and JPLegsAction is waiting at the same time, then
the previous JPHeadAction has finished but the next JPHeadAction does
not start because JPHeadLegsAction has a priority.J P A c t i o n+ r e s e t ( )+ s t e p ( i n t n )+ s e t B o d y ( J P B o d y * )J P A c t i o n M o d u l e+ a c t i o n R e a d y ( e v e n t )J P B o d yH e a d+ s e t O n e T i m e H e a d A c t i o n ( )+ s e t L o o p H e a d A c t i o n ( )+ c a n c e l H e a d A c t i o n ( )+ s t o p H e a d A c t i o n ( )L e g sH e a d L e g sE a rT a i lH e a d L E DF a c e L E DT a i l L E D

J P H e a d A c t i o n J P L e g s A c t i o nJ P H e a d L e g s A c t i o nJ P H e a d L E D A c t i o n J P E a r A c t i o nJ P T a i l A c t i o n
J P F a c e L E D A c t i o nJ P T a i l L E D A c t i o n

Figure 3.1: JPBody and JPAction’s.

3.1.2 One Time and Loop Process

There are two ways to process actions by JPBody. One is that an action
is processed once and is discarded when it has finished. The other is that
an action is processed more than once until another action comes. We call
the former one time process and the latter loop process. We define that one
time process has a priority over loop process. In addition, when the one
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time process finished, the previous loop process is processed again. In this
way, we keep AIBO walking, sometimes turning, and shooting (Fig. 3.2).

h e a d & l e g sh e a dl e g s t i m ew a l k( l o o p ) s w i n g h e a d( o n e t i m e )w a l k( l o o p ) s h o o t( o n e t i m e ) s h o o t( o n e t i m e )w a i t w a l k( l o o p )s u s p e n d
Figure 3.2: An example of timetable for processing actions.

3.1.3 Basic Actions

This section introduces and describes several basic actions. There exist ac-
tions for all parts of AIBO. The actions are classified into three categories:
(static) changing angles or states into the specified one and keeping it, (se-
quential) changing angles or states continuously on a scenario, and (dy-
namic) changing angles or states whose values are calculated dynamically.
Table. 3.1 shows the categories of actions.

HeadJointAngleAction

HeadJointAngleAction moves the head to the specified angles in the specified
frames. If the current angle of the head is (0, 0, 60) that is the triple of
tilt1, tilt2, and pan, and HeadJointAngleAction(0, 0, -60, 100) starts to be
processed. The head will move from left to right at a rate of 1.2˚ a frame.

class HeadJointAngleAction : public JPHeadAction {
public:
HeadJointAngleAction(JPHeadJointAngle& angle, int frame);
void setAngle(JPHeadJointAngle& angle);

};

HeadJointAngleAction2

HeadJointAngleAction2 also moves the head to the specified angles but the
frame is not given and calculated from dividing the difference of angles by
the constant δ.

class HeadJointAngleAction2 : public JPHeadAction {
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Table 3.1: The categories of actions.

static sequential dynamic
Head HeadJointAngleAction HeadMotionAction

HeadJointAngleAction2
Legs LegsJointAngleAction LegsMotionAction CompositeWalkOdAction

LegsSequentialAction PositioningWalkAction
HeadLegs HeadLegsMotionAction
HeadLegs HeadLegsSequentialAction
Ear EarStateAction
Tail ShakingTailAction
HeadLED HeadLEDStateAction HeadLEDMotionAction
TailLED TailLEDStateAction
FaceLED FaceLEDStateAction FaceLEDMotionAction
FaceLED FaceLEDFadeStateAction

public:
HeadJointAngleAction2(JPHeadJointAngle& angle);
void setAngle(JPHeadJointAngle& angle);
void setTiltDelta(uradian delta);
void setPanDelta(uradian delta);
void setRollDelta(uradian delta);

};

HeadMotionAction

HeadMotionAction processes HeadMotion which is the sequence of angles of
the head and frame. However, this action is merely used. The head is used
to search and track the ball, or to pass and shoot the ball. In the first case,
HeadJointAngleAction2 is used. In the latter case, HeadLegsMotionAction
is more useful because the action can move the head and legs synchronously.

class HeadMotionAction : public JPHeadAction {
public:
HeadMotionAction(HeadMotion& motion);

};

LegsJointAngleAction

LegsJointAngleAction moves the legs to the specified angle in the specified
frames.

class LegsJointAngleAction : public JPLegsAction {
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public:
LegsJointAngleAction(JPLegsJointAngle& angle, int frame);

};

LegsMotionAction

LegsMotionAction processes LegsMotion which is the sequence of twelve
angles of the legs and frame. However, instead of this action, HeadLegsMo-
tionAction is used.

class LegsMotionAction : public JPLegsAction {
public:
LegsMotionAction(LegsMotion& motion);
void setMotion(LegsMotion& motion);

};

LegsSequentialAction

LegsSequentialAction processes the sequence of JPLegsActions from head
to tail. This action is useful for packing some actions.

class LegsSequentialAction : public JPLegsAction {
public:
LegsSequentialAction();
void addAction(JPLegsAction* action);

};

CompositeWalkOdAction

CompositeWalkOdAction uses composite walk module, which generates walk-
ing motions, and odometer module. Three parameters for walking forward,
sideways, and rotating are specified for the action. For example, the param-
eters (1.0, 0, 0) means running at full speed, (0.5, 0.5, 0) means walking
diagonally, (0, -0.5, 0.5) means turning around, and so on.

class CompositeWalkOdAction : public JPLegsAction {
public:
CompositeWalkOdAction(OdometerJPM* odometer);
void setParameter(double f, double s, double r);

};

PositioningWalkAction

By using PositioningWalkAction, we can easily make AIBO walk to the
specified position. This action uses CompositeWalkOdAction.
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class PositioningWalkAction : public JPLegsAction {
public:
PositioningWalkAction(OdometerJPM* odometer);
void setTarget(int x, int y, int theta);
void setTarget(int x, int y, int theta, int lookX, int lookY);

};

HeadLegsMotionAction

HeadLegsMotionAction processes HeadLegsMotion which is the sequence of
twelve angles of the legs, three angles of the head and frame. This action is
used for shooting, getting up, and several emotional motions.

class HeadLegsMotionAction : public JPLegsAction {
public:
HeadLegsMotionAction(HeadLegsMotion& motion);
void setMotion(HeadLegsMotion& motion);

};

HeadLegsSequentialAction

HeadLegsSequentialAction processes the sequence of JPHeadLegsActions.
This action is useful for packing some actions.

class HeadLegsSequentialAction : public JPLegsAction {
public:
HeadLegsSequentialAction();
void addAction(JPHeadLegsAction* action);

};

EarStateAction

EarStateAction flicks ears with the specified states. However, we skipped
processing ear actions due to the limit of CPU performance, in the games.

class EarStateAction : public JPEarAction {
public:
EarStateAction();
void setState(JPEarState& state);

};

ShakingTailAction

ShakingTailAction shakes the tail. This action was used for SLAM Chal-
lenge.

24



class ShakingTailAction : public JPTailAction {
public:
ShakingTailAction();
void startShaking();
void stopShaking();
void setPanDelta(uradian delta);
void setTiltDelta(uradian delta);

};

HeadLEDStateAction

HeadLEDStateAction lights up head LEDs with a specified pattern.

class HeadLEDStateAction : public JPHeadLEDAction {
public:
HeadLEDStateAction();
void setState(JPHeadLEDState& state);

};

HeadLEDMotionAction

HeadLEDMotionAction processes HeadLEDMotion which is a sequence of
illumination patterns of Head LEDs.

class HeadLEDMotionAction : public JPHeadLEDAction {
public:
HeadLEDMotionAction(HeadLEDMotion& motion);

};

TailLEDStateAction

TailLEDStateAction lights up tail LEDs with a specified pattern.

class TailLEDStateAction : public JPTailLEDAction {
public:
TailLEDStateAction();
void setState(JPTailLEDState& state);

};

FaceLEDStateAction

FaceLEDStateAction changes the states of LEDs with a specified patterns.

class FaceLEDStateAction : public JPFaceLEDAction {
public:
FaceLEDStateAction();
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void setState(JPFaceLEDState& state);
};

FaceLEDFadeStateAction

FaceLEDFadeStateAction gradually changes the states of LEDs with a spec-
ified patterns. A parameter delta specifies the rate of changing states.

class FaceLEDFadeStateAction : public JPFaceLEDAction {
public:
FaceLEDFadeStateAction();
void setState(JPFaceLEDState& state);
void setDelta(int delta);

};

FaceLEDMotionAction

FaceLEDMotionAction processes FaceLEDMotion which is a sequence of
illumination patterns of Face LEDs. Unfortunately, FaceLEDMotionAction
is not used yet due to the lack of the face LED motion editor.

class FaceLEDMotionAction : public JPFaceLEDAction {
public:
FaceLEDMotionAction(FaceLEDMotion& motion);

};

3.2 Gait

Here, we will introduce two processes, which are necessary to create smooth
and fast walking. One is a manual tuning and the other is an automatic
optimization. We first explain the locus of gait and its creation process with
tools, and then we show the optimization process for better walking.

3.2.1 Locus of Gaits

Aiming for better gait on the game field, we changed the locus of gaits just
before RoboCup 2005 in Osaka. Before that, we had used triangle locus; it
was enabled to walk fast, while it was difficult to reduce vertical oscillation.
The problem arose from the friction between feet and the field, because it
was difficult to keep landing and leaving angles of the feet. In order to solve
this problem, we changed the locus to quadrangle. Fig. 3.3 and Fig. 3.4
show the difference.
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Figure 3.3: Locus (old version)
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Figure 3.4: Locus (new version)

3.2.2 Creating Gaits Manually

When we create some gaits, we do the following two processes. The first
step is a manual process using a gaits mixing tool, and the second step is an
optimization process using ceiling camera with Genetic Algorithm. Through
the first step, we can find good locus roughly, so that the optimization step
costs less times. On the first step, we create locus by setting each parameters
that have given in Fig. 3.4. When creating locus, we have to take it into
consideration that the gaits are well mixable.

Fig. 3.5 shows a screen shot of the gaits mixing tool, which we developed.
The tool enables us the followings.

• Create some basic gaits.

• Mix some basic gaits and check if it works well.

• Mix some basic gaits and define it as a basic gait (if it can be often
used on the game field).

• Examine the gaits by sending them to robot via wireless connection.

With this tool, we created some basic gaits (forward, backward, leftward,
rightward, clockwise rotation, anticlockwise rotation, etc.), which are mixed
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Figure 3.5: Gaits Mixing Tool

each other on the game field. Moreover, we can define a mixed gait as a
basic gait if it can be often used on the game field. For example, it is easy
to define the following gait.

anticlockwise warp around = forward × 0.2
+ rightward × 0.8
+ anticlockwise × 0.7

3.2.3 Optimization of Gaits

Genetic Algorithm

In our genetic algorithm, we set the size of populations to be 50, and the
mutation probability be 10%. In the initial population, each gene has ran-
dom values as parameters. For each gene, the robot moves actually and
evaluates the fitness score. Among 50 genes, the best 20 genes will be alive
in the next generation, and the rests are exchanged with new ones. The
crossover operation is executed for these 20 genes, at any points. The fit-
ness score is measured by the distance between the starting position and the
end position for a fixed period. By this system, we could develop fast gaits
automatically.

Measurement Environment

In order to measure the position of a robot from the ceiling camera, we use
two colored balls equipped on the back of the robot, as makers. By these
makers, the ceiling camera can determine the location and the direction of
the robot easily and accurately. The robot can receive these information
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Figure 3.6: Marker AIBO

from the camera via wireless network. Fig. 3.6 shows a robot with the
fmarkers.

3.2.4 Mixing Gaits

Gaits which were passed the optimization process are saved as a basic gaits.
Actual gaits on the field are created by mixing those basic gaits.

In the past, we have enabled gaits on the game field mixing six basic
gaits (forward, backward, leftward, rightward, clockwise, anticlockwise) with
some ratio. However, we have felt some shortage of this method, because a
full speed walking and an approach walking toward the ball is hardly equals
to a normal walking.

We have extended the mixing method and got flexibility; mixability with
not only six basic gaits, but an arbitrary number of gaits. The mixed gait
G⃗ can be described as

G⃗ =
n∑

i=1

pi|pi|√∑n
j=1 p2

j

g⃗i,

and it can be obtained simply from the weighted sum of n factors. Here, g⃗i

is the ith basic gait, and pi is the ratio for the weight of g⃗i. In the previous
method, n was fixed to n = 3: forward-backward, leftward-rightward, and
clockwise-anticlockwise. By increasing the number n, any kind of gaits had
come to be mixed each other.

3.2.5 Odometer

For each step of walking, the robot has to calibrate its own position especially
when no beacons are in its view. For self-positioning, we prepared position
calibration curve (Fig. 3.7) as a file. Each gait has its own curve. When some
gaits are mixed, those curves are also mixed and the position calibration is
done.

29



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100

di
st

an
ce

 [m
m

]

ratio

forward

Figure 3.7: Calibration Curve

We realized that the calibration value estimated from the mixed curve
does not necessarily correspond to the actual distance of the movement. It
will be better to prepare calibration curves by actual measurements even
for the mix gaits, instead of simply mixing these curves. It remains to our
future work.

3.3 Locomotion

In Section 3.2, locus of gaits and its change were shown. Each gait has
landing point, leaving point, and two top points as a locus. To convert this
locus (four points) into actual joint angles for walking, we have to interpolate
these points. Here, we introduce our interpolate method and the details of
gait locus.

3.3.1 Interpolation of Locus

Interpolation step needs the number of interpolate points. Additionally, it
is natural for the distance between adjacent interpolated points of an actual
gait to be non-uniform; the first half and the last half of the gait motion
speed may have some difference. To generate natural walk, we divided a
gait into “ground phase”, “air phase”, and two “other phase”s as Fig. 3.8.

We use Hermite interpolation to make locus motion to be smooth. In
case the locus was interpolated by Linear method, its locomotion could be
rough. There are many interpolation methods that makes smooth walking:
Spline (first, second, third...), Lagrangian, Hermite, and so on. In
these methods, Spline-third and Lagrangian require more computing
costs, whereas Spline-first and Spline-second lack approximate accu-
racy. We think that Hermite interpolation takes a balance of accuracy and
cost.
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Figure 3.8: Four phases of the Gait
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Chapter 4

Vision

In RoboCup, image processing is one of the most essential problems that
make a difference of the performance of soccer robots. Last year, our robots
consumed most time for image processing. This year, we shaped up our
system at first, and introduced new approaches. Our vision system consists
of three modules, CDTBox, Vision and DetectBall. CDTBox module
detects 8 specific colors from the original 24-bit color image. Vision module
recognizes landmark objects, and DetectBall module recognize a orange
ball. Figure 4.1 shows the flowchart of image processing. The detail of each
module is as follows.

4.1 Color Detection Table

The role of CDTBox is to classify 24-bit colors into specific colors with
a color detection table. Therefore, making the table is important for our
vision system.

Camera 

CDTBox

Raw Image

Vision DetectBall

DetectStatus

Specific Color 
Image

Ovserved
Ball Information

Ovserved
Landmark Information

Figure 4.1: The flowchart of Image Processing
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Last year, we used the table which consists of 6 threshold values for each
specific color to classify colors. It was on the HSV color space. The table
was made by deciding H-max, H-min, S-max, S-min, V-max, and V-min
values by hands. Making the table needed a long time and much experience
because it required a sense of human. Therefore, it was so difficult that we
decided each max-min value by hands.

This year, the format of the table is changed. The table consists of the
3D-Matrix which size is 64× 64× 64, and it is on the YUV space. The con-
struction of the table takes much more time compared to the above method
and is required the sence of human similarly. Hence, we develope a learning
tool for resolving these problems, (show Figure 4.2) This learning tool re-
duces operations required the sense of human, and make the construction of
the table easily. The usage of this tool is as follows. First, choose a color in
the group (Red Ellipse in Figure 4.2) and click a point in images on the tool
(Yellow Boxes). Then the color of the point is learned.Eight specific color,
red, blue, yellow, cyan, pink, green, white, and orange, are learned. Those
are the color of uniform of robots, goal, pole, field, line and ball. Colors that
does not relate with a game is learned as negative samples.

Figure 4.2: Color Table Making Tool

This tool enables us to make the table without the sense of human,
because of only choosing pixels of objects in sample images. The problem
of this method is which image we choose for the subject of the learning.

Last year, we made the table with the still images taken by standing
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AIBO. These are so available for learning the color of specific cases. How-
ever, the image that AIBO sees in the game is actually shaky. The colors of
objects in shaky images are different from those in still images. Therefore,
this year, we make the table with images that taken by moving AIBOs.
Figure 4.3 is the tool for taking the images. This tool can capture both
still images and the shaky images that are taken by moving AIBOs actually.
Hence, it is enable to learn the colors in shaky images, especially the colors
of the edges of objects with blurring.

Figure 4.3: Image Capture Tool

4.2 Ball Recognition

DetectBall module recognizes the ball from a image received the CDTBox
module. A naive algorithm which counts the orange pixels in the image to
estimate the distance does not work well, since the ball is often hidden by
other robots, and the ball may be on the corner of the view as shown in
Figure 4.4. We show our algorithm to recognize the ball and estimate the
position relative to the robot, from a image.

In the image, the biggest component colored by orange, satisfying the
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following heuristic conditions, is recognized as the ball.

1. The edge length of the component has to be more than 10 pixels, in
order to exclude too small components.

2. The ratio of the orange pixels to the area of the bounding box must
exceed 40%.

3. If the component touches to the edge of the image, the length of longer
side of the bounding box must be over 20 pixels.

We use the diameter of the ball to estimate the distance of it. However,
the ball is often hidden by other robots partially, and when the robot ap-
proaches to the ball, only a part of the ball is visible at the corner of the
camera view. Thus the size of the bounding box and the total number of
the pixels are not enough to estimate the distance accurately.

Figure 4.4 shows several cases of the diameter estimation. When the ball
is inside the view completely (case 1), we regard the length of longer side of
the bounding box as the diameter of the ball. When it touches to the edges
of the image, we use three points of the components since any three points
of the edge of a circle uniquely determine the center and the diameter of it.
We choose the these three points as follows. If the centroid of the component
exists upper side (case 2), we choose the leftmost and rightmost points on
the edges of the bounding box, and calculate the median point on it as
the referring points to reconstruct the circle. In the same way, we use top,
bottom, and median for left case 3 or 4 (left or right side), and leftmost,
rightmost, and median for case 5 (lower side).

4.3 Landmark Recognition

Vision module recognizes landmark objects, for instance, beacons, goals,
and lines. It receives specific color images from CDTBox module and out-
puts the information of the objects to DetectStatus module. DetectStatus
module keeps various information of landmarks and ball, and other modules
get those information from it. Last year, we use only connected compo-
nents to recognize objects in the image. This year, we use a hybrid method
that consists of connected components and scan lines. That hybrid method
reduces false recognitions and calculates accurate distance to the objects.
Figure 4.5 shows the flowchart of the object recognition. The detail of each
recognition algorithm is shown as follows.

4.3.1 Compute Connected Components

At first, Vision module computes connected components for specific color
image that received for CDTBox. Last year, we computed connected com-
ponents for three colors (Cyan, Pink, and Yellow) in whole region of the
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case 1

case 2 case 3

case 4 case 5

Figure 4.4: Cases of Ball Recognition. Yellow circles on the edge show
vertexes of a inscribed triangle. Red arrow presents the direction of the
search of vertexes. The diameter of the ball is calculated by using these
vertexes.
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CDTBox

Specific Color 
Image

Compute Connected
Components

Beacon Recognition

Goal Recognition

Sets of Connected Components
for each specific color

Rests of the Components

Sanity Check

Landmark Data

Figure 4.5: The flowchart of the Object Recognition

image, although the most region that was filled any other colors did not re-
late to the recognition process. It consumed too much computing time. This
year, we calculate clipping areas in advance when CDTBox converted the
image, and reduce the cost of the computation of connected components.
Those calculated components are sorted by the total number of pixels of
each color. We store coordinates of the bounding box, the total number
of pixels, and the centroid of each component. Those information are used
below process.

4.3.2 Beacon Recognition

All beacons consist of a reasonable sized Pink section. It is easy for robots
to distinguish Pink section under the various lighting conditions. Therefore,
beacons are the first objects to be recognized. To find beacons, we check in
turn whether Yellow or Cyan components exist near the Pink components.
The details of the beacon recognition are as follows.

1. The first indication is that the length of the edge of each pink compo-
nent is longer than 4 pixels.

2. For each pink component, the total number of pixels must over 10
pixels.

3. We calculate a height and a centroid (cx, cy) for each pink component,
height = ((y1− y0+1)+ (x1−x0+1))/2. If a pink component forms
a beacon, a cyan or yellow component exists upper or lower side of
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the pink component. The estimation point of centroid of the compo-
nent is calculated according to the headSlant and height, cxupper =
cx+height× sin(headSlant), cyupper = cy−height× cos(headSlant),
headSlant is horizontal gradient of the head of the robot. It is calcu-
lated by the Kinematics routine. The neighborhood of the estimated
centroid is searched. If a cyan or yellow component is found, we go on
the next step.

4. We check the ratio of pink pixels to cyan or yellow pixels. If the
ratio falls in the range of two thresholds,maxRatio,minRatio, we store
the coordinates of bounding box, the total number of pixels, and the
centroids of two components. In addition, delete those components in
the memory. Figure 4.6 shows an example of beacon recognition.

5. If the ratio is over or under the thresholds, we check the upper or
lower color by the line scanning. This scanning is executed according
to the headSlant. In fact, It is executed vertically in the view. For
example, we find some cyan pixels above and white pixels below, we
recognized it as a CyanPinkPole. Figure 4.7 shows an example of
beacon recognition.

Cyan Component

Pink Component

height

headSlant

Figure 4.6: An example of beacon recognition (reasonable ratio)

We calculate the distance to a beacon with the below formula.

Distance = BeaconConst/DistanceBetweenCentroids+BeaconIntercept
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Cyan Component

Pink Component

Check White

Figure 4.7: An example of beacon recognition (unreasonable ratio)

BeaconConst and BeaconIntercept are calibrated by measuring the length
between centroids of the two components that form the beacon. we use that
length for estimating the distance to a beacon, because it is more accurate
than using the total number of pixels of components for estimating. Where
the ratio of two components is unreasonable, we use the height of bigger
component instead of the length, because the length of centroids of two
components equal to the height of a component by rights.

4.3.3 Goal Recognition

As is the case with the beacon recognition, we use a hybrid method for
recognizing Goals. Goals consist of the component that has same colors
as beacons. It is difficult to distinguish whether that colored component
belongs to the goal or a beacon. Hence we executed the beacon recognition
before the goal recognition. Since components that belong to beacons are
picked out in advance, remaining components become targets of the goal
recognition process. The detail of the recognition algorithms is shown as
follows.

1. At first, we check the total number of pixels of each remaining com-
ponent colored Cyan or Yellow. it must exceed 150 pixels because of
excluding too small components.

2. The components that have pink components just above are also ex-
cepted. These components have possibilities to be beacons yet, be-
cause the beacon recognition that has already executed may fail to
recognize some beacons.
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3. Above step excludes the components that have some possibilities as a
beacon, but in the case of closing to the beacon, robots face a big Cyan
or Yellow component. To except those components, we check below
colors of the components using the scan line method vertically. If the
components have enough white pixels below, these components are
excluded from the candidates. It may also remove correct components
where other robots close in front of the robot. In this case, since the
visibility of the robot is poor, the result of the recognition is trustless.

4. We estimate a distance to the goal according to the height or width
of the goal. Six scan lines calculate a length of the width or height of
the goal horizontally and vertically. Figure 4.8 shows an example of
the scan lines.

Figure 4.8: Line Scanning for the goal

5. The biggest component that satisfies above conditions is recognized
as a goal. We store coordinates of the bounding box and the total
number of pixels.

4.3.4 Sanity Check

In the above processes to recognize landmarks, some landmarks may be
misunderstood. We check the accuracy of landmarks according to their
location. For instance, if we recognize the beacon which is located 1000 mm
high, it is removed for recognized landmarks. We set two thresholds (one
is a minimum height and another is a maximum height) for each landmark
and exclude landmarks that have illegal heights.
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4.4 Line Recognition

We developed two methods for recognizing filed lines. Those are used for
helping self-localization. Both methods detect the border between field and
field line and are based on line scanning. Each scan line searches the point
of the edge of a line for a image from bottom to top. The difference of
two methods are input images. One receives raw images, another receives
CDT images. In first method, we define the point, in which the value of Y
increases significantly, as a field line border. In second method, the point
that has white pixel above and green pixel below defines the border. We
present a result of our line recognition method in Figure 4.9 to Figure 4.11.

Both of them have been inadequate. they cannot recognize the unique
attribute of line , for instance, a center circle and corners of penalty areas.
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Figure 4.9: The image that captured by the camera

Figure 4.10: The position of a robot and filed lines

Figure 4.11: The result of line recognition42



Chapter 5

Other Modules

5.1 Localization

Localization is an important task for automatic positioning, shooting and
team coordination. We use Monte-Carlo localization technique for self local-
ization and ball localization. Kalman filters are another well-known methods
to localize a position of robots and a ball, and are more efficient than the
Monte-Carlo localization. Because of the size of the field being bigger than
last year, no more than one or two landmarks are observed at one time in
AIBO’s sight. In this condition Monte-Carlo localization is more suitable
than Kalman filters.

5.1.1 Self Localization

Self localization module is a program which takes as input any of distances
and directions of landmarks, e.g. poles and goals, and calculates as output
the location of a robot. In this year, however, the change of the field reduces
the number of landmarks in AIBO’s sight. It is hard to determine precisely
where a robot is placed from only one or two landmarks. Then we use the
white lines as landmarks in addition to poles and goals.

Our Monte-Carlo self localization algorithm is patterned after German
Team 2004 [2]. First we implemented the algorithm by using Processing
which is an open source programming language and environment based on
Java [3]. Processing have an editor window and allow a programmer to
develop programs in a try and test manner like scripting languages and to
display results graphically by just clicking the “run” button. We tested sev-
eral implementations of the Monte-Carlo localization as shown in Figure 5.1,
and then translated it into a C++ version as module SelfMCL.

Calculation of the Monte-Carlo localization takes time proportional to
the number of locators which consist of a position (x, y) and a rotation θ.
We decided the number of locators was 1,000.
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Figure 5.1: Monte-Carlo self localization test environment on Processing.

Figure 5.2 shows classes for the Monte-Carlo self localization. Monte-
Carlo Localization module is a subclass of Odometer which is used by
GaitsMixerOd and updates the position of a robot whenever the robot
walks. We developed three kind of implementations for Monte-Carlo local-
ization: SelfMCL without using white line, SelfMCL2 and SelfMCL3
with using white line.

S e l f M C L 3+ u p d a t e B y D e t e c t S t a t u ( )+ s h a k e L o c a t i o n s ( )+ d e c i d e P o s i t i o n ( )+ u p d a t e B y W h i t e L i n e ( )S e l f M C L+ u p d a t e B y D e t e c t S t a t u ( )+ s h a k e L o c a t i o n s ( )+ d e c i d e P o s i t i o n ( )
M o n t e C a r l o L o c a l i z a t i o nl o c a t i o n s+ u p d a t e ( )+ n u p d a t e ( i n t n )+ r e s e t ( ) M C L o c a t i o nx , y , t h e t as c o r ev a l i d+ a d d X Y T ( d x , d y , d t )+ r a n d o m i z e ( )1 *

S e l f M C L 2+ u p d a t e B y D e t e c t S t a t u ( )+ s h a k e L o c a t i o n s ( )+ d e c i d e P o s i t i o n ( )+ u p d a t e B y W h i t e L i n e ( )

O d o m e t e rx , y , t h e t a+ a d d X Y T ( d x , d y , d t )

Figure 5.2: Monte-Carlo self localization classes.
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5.1.2 Ball Localization

Last year, our robots play soccer based on the location of the ball which
is observed directly. However, in soccer game, the position of the ball is
fluctuating. It is difficult for the robots to keep the correct position of the
ball only based on the direct observation because the robot has narrow view
so that it frequently lost the ball. Then we are trying to develop a system to
infer the position of the ball even when it is invisible, based on Monte-Carlo
method.

A Monte-Carlo ball localization algorithm is similar to a self localization
one and is very simple, which takes as input only the position of the ball.
However, it needs great accuracy for locating the position of the ball to
kick the ball. If the amount of an error for locating the position of the
ball was more than 2 cm, robots cannot even touch the ball, much less kick
it. Therefore we gave precedence to accuracy over stability for adjusting
parameters of ball localization.

For self localization the scores of locators are not changed when none of
landmarks are observed. However, for ball localization the scores of locators
are decreased even when the ball is not observed. The ball localization works
like the spectrum of human eyes. When robots lost the ball temporarily,
Monte-Carlo ball localization keeps the position for a little while. This
function of the ball localization had a great effect especially for chasing the
ball with other robots because in the situation ball is often hidden.

We implemented ball localization by using Processing at first as for self
localization, and translated it into C++ version after testing and adjusting
parameters (Fig. 5.3).

Figure 5.3: Monte-Carlo ball localization test on Processing.
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5.2 Sensor

AIBO have many kind of sensors, for example, sensors for acceleration,
the angles of joints, touching on the back, and so on. For the sensors we
implemented many kind of modules which manipulates data structures of
sensors in OPEN-R. The modules allow us to easily measure the values
of sensors without OPEN-R programming knowledge only by calling get
methods.

5.2.1 AccelSensor

AccelSensor module supports acceleration sensors of x-axis, y-axis, and
z-axis. In addition to the sensor values, AccelSensor decides the posture
of the robot, which is normal, upside-down, left-down, and so on.

5.2.2 HeadJointAngleSensor

HeadJointAngleSensor supports the values of joint angles of the head,
e.g. the tilt of the neck, the pan of the head, and the tilt of the chin (for
ERS-7) / the roll of the head (for ERS-210/220).

5.2.3 TouchSensor3

TouchSensor3 supports touch sensors of head, chin, back, and toes. The
value of touch sensors are whether it is being touched or not, and if touched,
the continuous time of it. Moreover, when it is touched and released, a
clicked flag is set. Once the clicked flag is read, the flag is reset.

5.2.4 PSDSensor

PSDSensor supports positioning sensing detectors of far head, near head,
and body on ERS-7 (only head on ERS-210/220). It reports the distance
from an object in front of the robot.

However, the PSD of body does not work because of our low and forward-
bend standing posture, it always reports the minimum value.

5.2.5 LegsSensor

LegsSensor supports the load and voltage values of motors of legs. The
values may be useful for detecting a collision. Unfortunately, we did not
use the values in soccer robots, but used these in some experiments for
optimization of locomotions.
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5.3 Network

This section describes modules for networking. As mentioned in Chapter
1, networking is not processed JPObject, that is the main program of Jolly
Pochie, but by outside programs TCPServer, UDPServer, and GameCon-
troller. Networking modules are the proxy of the programs.

5.3.1 RemoteControl7

RemoteControl7 is a generic remote control module for a mainly debug-
ging purpose. When the module receives a message, the message is trans-
ferred to an appropriate remote control module selected by a first character
of the message.

A lot of remote control modules has been developed: RCAccelSta-
tus, RCBallMCL2Monitor, RCCapture, RCCheckDistance, RC-
CheckOrient, RCDetectBall, RCDetectStatus, RCFixedMotion,
RCGaitsMixer, RCJointAngle, RCLuaScript, RCMonteCarloMon-
itor, RCMotion, RCParaWalk, RCPositioningWalk, RCProfile,
RCRecognize, RCSlant, RCSonarData, RCWalk.

Especially RCLuaScript is the most useful. It is able to process all
the thing that is able to process in Lua. New remote control modules are
merely created hereafter.

5.3.2 UDPCom2

UDPCom2 is a simple module for communicating through a UDP channel
with other robots. Messages from GameController are not processed by this
module, UDPCom2 is used for team play.

All messages are processed by Lua, i.e. the messages are Lua scripts.
Therefore certain robot can totally control other robots. In this year, we
use the message for changing the values of variables which represent the
status of other robots. However, this mechanism seems to be week against
accidentally troubles. We are plan to change the mechanism into more
robust one in next year.
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Chapter 6

Strategy System

6.1 Action Callback

In our framework, we can call a callback function soon after a certain ac-
tion of a robot is finished. We call this callback “action callback”. Using
action callback functions, we can reserve processes executed after actions
in advance. Action callback is mainly used when a robot swings its head
from side to side, and performs a shoot motion. The following is a script
that a robot swings its head to an angle 80, and to an angle -80. The func-
tion basicMotion:swingHead(tilt1, pan, tilt2) makes a robot swing
its head to a position specified by the three angle tilt1, pan, and tilt2. If
we give a certain function to the fourth argument, we can set the function as
an action callback function. If the fourth argument is a string, a transition
to the state, specified by the string, is occurred at the time of action call-
back. We use this state-transition-callback method when we write a script
by using state tree in the next section.

require "JPLib/Units.lua"

function init()
basicMotion:swingHead(0, d2ur(80), 0,

function()
basicMotion:swingHead(0, d2ur(-80), 0)

end)
end

function mindNotify()
end
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Table 6.1: An example of hierarchical states in four legged robot league．
playing search swing left1

right1
...

turn left1
right1
...

walk area1
...

...
approach near

far
...

shoot forward
left
...

support
...

ready
set
penalized
finished

6.2 State Tree Machine

We had used a normal state machine to create strategies so far, because
we could treat strategies as simple models using a state transition method.
However, As a robot program became complex, it was difficult to understand
all of the states of the state machine. Therefore, this year we use a state
machine with a tree structure in order that we can break a large program into
small chunks that we can easily understand. We call the tree structure “state
tree”, and call the state machine using the state tree “state tree machine”.
The state tree is suitable for soccer strategies in RoboCup, because we may
think hierarchical states as shown Table 6.1. This hierarchical states should
be represent as a tree structure.

Now, let us show the outline of the implementation of a state tree ma-
chine. First, we create a state tree as shown Figure 6.1 that represent the
states as shown Table 6.1. Secondly, we create functions that execute pro-
cesses corresponding to each node. We call this function “node function”.
a state of the state tree is expressed in the path from the root to a certain
node in the tree. Finally, we call each node function from the root to the
node in order to execute the process for the state.
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Figure 6.1: A state tree that represent the states as shown tab. 6.1

A state tree machine is simply implemented in Lua, because we can
easily make a tree structure by using a table structure in Lua. Additionally,
it is expected to be able to create a state tree, and define node functions at
the same time as follows, because the functions in Lua are first class values.

playing = function() ... end
playing.search = function() ... end
playing.search.swing = function() ... end
playing.search.walk = function() ... end
...

However, a syntax error obviously occurs in the second line from the
top, because the function playing is treated as a table. In order to remove
this error, we use the metatable method in Lua. Using a metatable, we can
create a table that can call a node function at the time of function call. The
following procedures show how to use metatables.

1. We define the node function with node name playing. The node
function is always appended to leaf in the state tree. The following
code is equal to the first line from the top in the above code.

function playing()
...

end

2. The value of the function playing is copied to temporary variable
tmp func.

tmp_func = playing

3. The function playing is initialized as a table.

playing = {}
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4. We set a metatable so that the table playing can call the function
tmp func at the time of the function call of the table playing.

setmetatable(playing,{__call = tmp_func})

In the same way, we must execute the above procedures for all inter-
nal nodes. Lastly, if the state is “playing.search.swing”, we have only to
call the table playing(), the table playing.search(), and the function
playing.search.swing() in order from the front. The following functions
were actually implemented for the state tree machine.

• stree:setState(state) allows the state of a state tree to transit
from current state to the state state.

• stree:doAction() parses the state, which is a path in the state tree,
and call all node functions in order from the nearest node to the root.

• stree:new(func) replaces the function func with the table that can
call the function func.

The following script is an example for a robot to search a ball, moving
from side to side, and swinging its head. The function mindNotify() calls
only node functions described in the state. If the fourth argument func of
the function basicMotion:swingHead(tilt1, pan, tilt2, func) is not
a function but a string, the function stree:setState(func) is called as a
callback function.

require "JPLib/Units.lua"
require "JPLib/STree.lua"
require "JPLib/Vision.lua"
require "JPLib/CMotion.lua"

function init()
count = 0
ds = 1.0
stree:setState("walk.swingLeft")

end

function mindNotify()
stree:doAction()

end

function walk()
count = count + 1
if count > 100 then -- it is approximately 4000 ms.
count = 0
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ds = ds * -1.0
end

cmotion:walk(0, ds, 0)
end

stree:new("walk")

function walk.swingLeft()
stree:setState("walk.swingWait")
basicMotion:swingHead(0,d2ur(80),0, "walk.swingRight")

end

function walk.swingRight()
stree:setState("walk.swingWait")
basicMotion:swingHead(0,d2ur(-80),0, "walk.swingLeft")

end

function walk.swingWait()
visionLib:detectBall()

end

We can describe processes for the game states (e.g. to change LED
colors, to play sounds, and to check whether a robot has rolled upside down
or not) in node functions of nodes whose depth is one. We can easily write
robot scripts that follows the directions of the game controller, by loading
the game controller library. If we want to write a strategy in the playing
state, we have only to write in function playing.run(). The following script
prints the game states.

require "JPLib/Syslog.lua"
require "JPLib/STree.lua"
require "JPLib/GameCtrl.lua"

function init()
end

function mindNotify()
stree:doAction()

end

function initial.run()
print("it is initial state.")

end
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function ready.run()
print("it is ready state.")

end

function set.run()
print("it is set state.")

end

function playing.run()
print("it is playing state.")

end

function finished.run()
print("it is finished state.")

end

function penalized.run()
print("it is penalized state.")

end

The set state, the ready state, and the finished state may be common
in all robot scripts for soccer players. Moreover, we may mostly develop
strategies of the playing state. Therefore, we write independently the pro-
cesses for each state, and marge these scripts into a script for the playing
state, as if to graft subtrees onto a main tree. In order that the robot script
in which we only described a process of the playing state becomes a soccer
player script following the directions of the game controller, we have only to
load the scripts for other states, as follows.

require "JPLib/Syslog.lua"
require "JPLib/STree.lua"
require "JPLib/GameCtrl.lua"

-- graft subtrees
require "Ready6/ready.lua"
require "Set3/set.lua"
require "Final3/finished.lua"

function init()
end

function mindNotify()
stree:doAction()
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end

function playing.run()
print("the game strategy is written here.")

end

In conclusion, by using a state tree machine, we could more easily create
huge complex programs than using a normal state machine. The reason
is that we could divide between low-level layer and high-level layer in a
strategy, that in high-level layer we did not need to write the processes
written in low-level layer, and that we could create small subtrees, and graft
each subtree onto a main tree. However, the number of nodes in a state
tree machine may be larger than in a normal state machine, if we describe
a certain strategy by each method. As a result, it seemed that the program
written by using state tree machine easily caused logical errors. The most
common error is a transition to an unknown state. If this error occurs, a
robot will stop working even during a game. Therefore, in the coming years,
we may have to use a state tree machine to describe the outline of a strategy,
and use logic base or rule base system to describe the detail.

6.3 Behavior System

It is difficult for programmers to describe a whole strategy with a state tree
machine, because the number of the nodes in a state tree machine increases
rapidly even if a state tree machine is more convenient than a normal state
machine. Therefore, we put some processes into a medium-scale procedure
to make a whole strategy easy to understand. We call this medium-scale
procedure “behavior”. A behavior is like a subtree in a state tree as shown
Figure 6.2. Behavior system is developed based on a state tree machine, but
a behavior differs from a state tree machine on the point that a behavior
has an independent state of a state tree machine.

We implement a behavior as a function that can use another state tree.
As a matter of convenience, we call the state tree to describe a whole strategy
“global state tree”, and call a state tree used by each behavior “local state
tree”. By using local state trees (behaviors) in the global state tree, it is
easier for programmer to describe a strategy than before, because both the
global state tree and the local state trees will have a small number of the
nodes.

Every time we call a behavior in the global state tree, the behavior works
changing the state in the local state tree. Since a behavior is completely
independent of the other behaviors, we do not have to know the state of the
local state tree in the behavior. Also, a certain transition from one state to
another state does not result in an unexpected drawback. If a behavior is

54



Figure 6.2: The outline of the behavior.

normally finished, or causes an error, we can notice it by a returned value
of the behavior.

Behaviors are implemented by using a metatable in a similar way to
the global state tree. Using a metatable, we can treat a behavior as both
a function and a table. A behavior, in fact, is a table under which we can
create node functions. This table means the root of a local state tree. When
we call a behavior as a function, the local state tree under the behavior
internally works changing its own state. Although a behavior is similar to
a state tree machine, we must use setState(str) in the behavior instead
of that in the state tree, and tell the main program the end or error of the
behavior if necessary.

The following script is a behavior that a robot swings its head from
side to side. The function behavior:newBehavior(str) creates and re-
turns a behavior named str. In the following example, The variable b
means behavior.swingHead, and The function-definitionb:init() means
behavior.swingHead.init(self). When we call behavior.swingHead:init(),
the global variable behavior.swingHead is assigned the local variable self.

require "JPLib/Behavior.lua"

b = behavior:newBehavior("swingHead")

function b:init() -- means behavior.swingHead.init(self)
-- self means behavior.swingHead
self:setState("swingLeft")

end

function b:swingLeft()
basicMotion:swingHead(0, d2ur(80), 0,

function()
self:setState("swingLeft")
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end)
end

function b:swingRight()
basicMotion:swingHead(0, d2ur(-80), 0,

function()
self:setState("swingCenter")

end)
end

function b:swingCenter()
basicMotion:swingHead(0, 0, 0,

function()
self:setState("finish")

end)
end

function b:finish()
return BEHAVIOR_STOP

end

Next, We show how to call behaviors. The following is an example
that call the behavior behavior:swingHead() defined above. Because the
behavior returns the constant value BEHAVIOR STOP at the finish time, we
can change the global state from "swing" to "swingFinish" in that time.

function swing()
if behavior:swingHead() == BEHAVIOR_STOP then
stree:setState("swingFinish")

end
end

In conclusion, behaviors are easily created by state tree method, and
simply used by function call method. Since each behavior should be not so
large, the difficulty using only state tree machine does not very often occurs.
However, behaviors cause another difficulty of where behaviors begin and
end. Should a search behavior include the process of checking whether a
robot found a ball? Should the process of approaching a ball be separated
to several behaviors? Should a one-robot behavior be different from a multi-
robots behavior? Frankly, we do not swear which way is best. A continuous
examination of the behavior system may teach us the answer of that.
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Figure 6.3: The shootable areas of three shoot.

6.4 Electric Field Approach

We tried using Electric Field Approach (EFA) [4] proposed by Team Chaos [6]
in hopes of creating a model of a complex strategy. The EFA is a kind of
potential field approaches. A robot nicely plays soccer automatically, only
by placing positive and negative artificial charges on strategically important
locations including robots themselves, and by working the robots to increase
the potential at the ball position.

Using EFA, we can simply implement a complex strategy, and easily
extend the strategy by adding actions. As regards shoot actions, we do
not have to consider the shootable area, even if the shootable area of each
shoot is different as shown Figure 6.3. If the shootable condition is defined
so that a robot can kick or head a ball in the shootable area, the robot
can select the best available shoot without fail. However, it is difficult to
confirm which action is being executed, if we use many actions. That is to
say, a strategy program becomes almost a “black box”. Hence, we can not
adjust the program in detail. Moreover, an EFA strategy has a possibility of
shooting to wrong direction in big situation, because locational errors near
opponents’ goal is not negligible as shown Figure 6.4. As a result, we did
not use the EFA method in the RoboCup 2005 competition. Nevertheless,
there may be several possible solutions.

6.5 Team Play System

In this year, we have developed a team play system that enables robots to
work cooperatively. Using this system, robots can dynamically change its
own role. For example, while one robot is chasing the ball, another robot
can move to a good position for a passed ball, and wait for the opportunity
of own shot. Moreover, robots can tell each other about the position of the
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Figure 6.4: The shoot direction error of the robot 1 is larger than that of the
robot 2, although the position errors of both robots are same. The robots 1
and 2 show actual positions, while the robots 1’ and 2’ show virtual positions
by localization method. A blue arrow shows a ideal shoot direction . A red
arrow shows a calculated shoot direction.

ball. The ball must be found more easily by all robots than by one robot.

teamPlay:init()

This function has some variable. “teamPlay.Info ball” receives the ball in-
formation. “teamPlay.udp count” is counter. When it more than “team-
Play.UDP WAIT”, a player sends the information. “teamPlay.current roll”
is a situation of a player. If the player is nearest to the ball in our team, we
call this situation of the player “Active”. And if the player is not nearest to
the ball in our team, we call this situation of the player “Passive”. “team-
Play.current roll” is given “Active” or “Passive”. “teamPlay.num” is the
number of the nearest player to the ball in the team. “teamPlay.my dist” is
a distance of the ball. Like this the function has these informations.

function teamPlay:init()
teamPlay.ball_Info = x=0, y=0
teamPlay.udp_count = 0
teamPlay.current_roll = "Active"
teamPlay.num = -1
teamPlay.my_dist = -1

end
teamPlay:init()
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set*()

A metatable makes this function be called every time after Play() is called.
The function has a function that send player’s information and a function
that receive other player’s information.

function teamPlay:set()
teamPlay.playing_func = getmetatable(playing).__call
teamPlay.playing_derived = function()

teamPlay.playing_func()
teamPlay:sendMessage()
teamPlay:getInfo()
return teamPlay:changeRoll()

end
setmetatable(playing, __call = teamPlay.playing_derived )

end

sendMessege()

This function send a player’s information and has a counter for adjusting
an interval. If the interval is not enough, all players do not send an infor-
mation in one cycle. The function checks an information. It erases an old
information which is sent by a penalized or down player.

teamPlay.udp count = teamPlay.udp count + 1
if teamPlay.udp count > teamPlay.UDP WAIT then
teamPlay.udp count = 0
teamInfo:sendMyInfo()
teamInfo:checkInfo()

end

getInfo()

This function calculates a position of the ball. If a player do not watch the
ball, it receives the information and calculates a position of the ball from
the ball information. If all players do not watch, the ball information is
initialized.

changeRoll()

This function works to judge whether a player is nearest to the ball. If the
player is nearest to the ball in our team, we call this situation of the player
“Active”. If the player is not nearest to the ball in our team, we call this
situation of the player “Passive”. When a player’s situation changes, the
function gives the player “Active” or “Passive” (Fig. 6.5).
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search track

approach support
active passive

Figure 6.5: Active and Passsive.

setStateActive()

This function changes a player’s state when it is nearest to the ball in our
team.

setStatePassive()

This function changes a player’s state while another player in our team is
nearer to the ball than it.
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Chapter 7

Strategies for Jolly Pochie
2005

7.1 Attacker

Attackers can change its own state depending on the game situation. There
are four states “Approach”, “Support”, “Track”, and “Search” (Fig. 7.1).
Each state is selected by an attacker corresponding to whether two condi-
tions is true or not. One is that the attacker is seeing a ball. The other is
that the attacker is the nearest one to a ball in our team players.

Before, the attacker in state of “Approach” judges whether it watches
the ball at all time, so it makes an useless state transition. Now, it judges
this when we want its state to change, so we can control the state transition.
And then if the attacker loses sight of the ball a moment, it can hold or chase
the ball. However that method has a disadvantage that its response becomes
slow when it loses sight of the ball.

As the attacker sometimes localize, it clashes with the other player and
its localization has an error. So we think an approach speed is more im-
portant than a localization. If the attacker entirely localizes, it wonders in
the field. Then it swings its neck and checks the direction of the goal while
approaching the ball. And it often localizes when it does not watch the ball.

Our system does not have the player recognition. The moving attacker
clashes with the other player. For preventing the attacker from clashing with
the other, we made the communication system. If there is an approaching
player which is the nearest to the ball, the other player does not approach
the ball and does not disturb it. Now the attacker in state of “Support”
only stops there and watches the ball at a position a little away. Because
the communication system has a problem that two player approaching the
ball send the information the different time, then comparing two players’
ball distance does not work well and they approach the ball.

On the other hand the player’s localization often has an error, so the in-
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search track

approach support

Figure 7.1: Changing states in Attacker.

BhAppFF BhAppN BhSSShApproach

Figure 7.2: Behaviors in approach.

formation is inaccurate. The error of the ball information makes the player’s
searching less efficient. The player in our team takes much time for finding
the ball than in other team. We have to improve behaviors in the “Search”
and the communication system. Like this the attacker in our team has many
problems. A correct localization, the player recognition and improving be-
haviors makes the player good.

We explain 4 states which the attacker have as follow.

7.1.1 Approach

When the player watches the ball and it is the nearest in our team’s players,
a player’s state is “Approach” (Fig. 7.2). It is the purpose of the state that
the player approaches speedy and shoots the ball in the direction of the goal
accurately. When the ball distance is far, BhAppFF makes it approach the
ball. When the ball distance is near, BhAppN makes it stop. When the
player stops in front of the ball, BhShSS makes it shoot the ball.
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BhSuFG BhSuppSupport

Figure 7.3: Behaviors in support.

BhSrDwn BhSrSin BhSrTuS BhSrWkSearch

Figure 7.4: Behaviors in search.

7.1.2 Support

When the player watches the ball and is not the nearest in our team’s players,
a player’s state is “Support” (Fig. 7.3). It is the purpose of the state that the
player supports and does not disturb the other player which is the nearest to
the ball. When the ball distance is far, BhSuFG makes it approach the ball.
When the ball distance is near, BhSupp makes it walk for the supporting
position.

7.1.3 Search

When the player does not watch the ball and other player is nearer than it,
a player’s state is “Search” (Fig. 7.4). It is the purpose of the state that
the player finds the ball speedily and efficiently. First BhSrDwn makes the
player search for a near place. Next BhSrSin makes the player search for a
far place. If the player does not find the ball, BhSrTuS and BhSrWk work
alternately. So the player walks for a searching position and turns. And it
walks for a next searching position and turns until one player in our team
finds the ball.

7.1.4 Track

When the player does not watch the ball and is not the nearest in our team’s
players, a player’s state is “Track” (Fig. 7.5). It is the purpose of the state
that the player receives the ball information and finds the ball. As it does
not watch the ball, it receives the ball information and searches the ball.
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BhTrSin BhTrWkTrack

Figure 7.5: Behaviors in track.

BhSuFG BhSuppSupportBhAppFF BhAppN BhSSShApproach

BhTrSin BhTrWkTrackBhSrDwn BhSrSin BhSrTuS BhSrWkSearch
Figure 7.6: Changing states in Attacker.

First it localizes and turns in the direction of the ball. Second BhTrSin
makes it swing its neck. Next it walks for the ball.

When these detailed each state and state transition are shown, it be-
comes the following(Fig. 7.6).

7.2 Old Attackers

We made many version of attackers, and improve attackers little by little. In
this section, We show several old attackers scripts that have been developed
before making the final attacker script.

7.2.1 At7

This attacker is made at RoboCup in Japan. It did not have communication
system and it did not use behavior. So program is written in the state, but
its state is so complicated that our programming is difficult. It had only two
states; Its state is approach when it watches the ball and its state is search
when it does not watch the ball. It in the state of approach turns to the ball
and approaches the ball in a top speed. On the other hand it in the state
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BhSrApp BhAppP BhShEFAApproach

BhSrNear BhSrTg BhSrTr BhSrWkSearch

AtHk

Figure 7.7: Changing states in AtHk.

of search swings its head and moves backward. If it does not find the ball,
it turns around and moves the searching position.

7.2.2 AtHK

We imported behavior which was written a part of programs into this at-
tacker(Fig. 7.7). So we could check behavior and our programming was
easier than before.

7.2.3 AtHK7T

We improved behaviors and made behaviors. Our team’s communication
system was imported into this attacker, and then the attacker’s state became
four states(Fig. 7.8). But JPLib/TeamPlay.lua does not exist and a program
for communication system is written in a function playing derived which is
called next to the function playing. In this time the state of support and
the state of track are simply and equality. The player in this two states
moves between the ball and the searching position whether it watches the
ball or not. If it does not watch the ball, it calculates the ball position from
the information which is sent by the our team’s player. For checking self
localization the player in the state of the approach swings its head right and
left while approaching the ball. So swinging it’s head takes waste time and
makes it’s moving unstable.

7.2.4 At9ts

This attacker which was made when we arrived at Osaka used JPLib/TeamPlay.lua
and TeamPlay was equality with AtFinal0. It differs AtFinal0 in “Support”
and “Track” (Fig. 7.9). The attacker in the state of “Support” does not
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BhAtPosTrackBhSrDwn BhSrSin BhSrTuS BhSrWkSearch

AtHk7T

Figure 7.8: Changing states in AtHk7T.

Supp2SupportBhAppFG BhAppN BhSSShApproach

BhTrSinTrackBhSrDwn BhSrSin BhSrTuS BhSrWk4Search

At9ts

Figure 7.9: Changing states in At9ts.

approach. It moves slowly the position which is between the ball and the
searching position and wait at there. But in our team only one player ap-
proaches and the other players watch the ball on a far place, so it is disturbed
by the opposing player and does not approaches the ball.

7.3 Defender

As is the case of attackers, defenders can also change its own state depending
on the game situation the process of each state of defenders is only different
from that of attackers. By necessity, defenders should be more difensive
than attackers.

The defender always does not attack the target goal and it stays in our
team’s territory. It stops and walks for the guarding position that is between
own goal and the ball, when the ball is out of our team’s territory and in
own goal’s area. And if it arrives at the guarding position, it localizes. So
its localization is more accurate than the attacker.
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BhAppFF BhAppN BhSSShApproach

BhGp
Figure 7.10: Behaviors in approach.

7.3.1 Approach

When the player watches the ball and is the nearest in our team’s players,
a player’s state is “Approach” (Fig. 7.10). When the ball distance is far,
BhAppFF makes it approach the ball. When the ball distance is near,
BhAppN makes it stop. When the player stops in front of the ball, BhShSS
makes it shoot the ball. These is much the same to the attacker, but the
defender chases the ball only when the ball is in our team territory. The
defender does not go out of our team territory, as it always defends and
walks for a good position which is between the own goal and the ball.

We explain 4 states which the attacker have as follow.

7.3.2 Support

When the player watches the ball and is not the nearest in our team’s players,
a player’s state is “Support” (Fig. 7.11). The state is based on “Approach”.
It is the purpose of the state that the defender approaches and shoots the
ball, whether other player approaches the ball. That has the risk that it
disturbs other player, but it approaches the ball.

7.3.3 Search

When the player does not watch the ball and no player is nearer than it,
a player’s state is “Search” (Fig. 7.12). It is a purpose of the state that
the player finds the ball speedily and efficiently. First BhSrDwn makes the
player search for a near place. Next BhSrSin makes the player search for a
far place. If the player does not find the ball, BhSrTuS and BhSrWk work
alternately. So the player walks for a searching position and turns. It walks
for a next searching position and turn until one player in our team finds the
ball.
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BhAppFF BhAppN BhSSShSupport

BhGp
Figure 7.11: Behaviors in support.

BhSrDwn BhSrSin BhSrTuS BhSrWkSearch

Figure 7.12: Behaviors in search.

7.3.4 Track

When the player does not watch the ball and is not the nearest in our team’s
players, a player’s state is “Track” (Fig. 7.13). It is the purpose of the state
that the player receives the ball information and finds the ball. As it does
not watch the ball, it receives the ball information and searches the ball.
First it localizes and turns in the direction of the ball. Second BhTrSin
makes it swing its neck.

When these detailed each state and state transition are shown, it be-
comes the following(Fig. 7.14).

BhTrSinTrack

Figure 7.13: Behaviors in track.
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BhTrSinTrackBhSrDwn BhSrSin BhSrTuS BhSrWkSearch

BhAppFF BhAppN BhSSShSupport
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BhAppFF BhAppN BhSSShApproach
BhGp

Figure 7.14: Changing states in Defender.

7.4 Goalie

Our goalie could save a number of shoot. It played a vital role in many
games. The goalie spent almost all the playing time in guard. This design
was quite effective to decrease shoots given up.

Our goalie have generally five states – position, search, guard, DFposit,
clear. The most important the goalie is wanted is stay in front of own goal.So
the most important state is position. Position is called several times as well
as starting in games. When the goalie is in front of own goal, search is called
first. What the goalie finds the ball which is target of the guard is directly
connected to decrease shoots given up.

When goalie found the ball, it chooses one of two states. In short, the
goalie should be either guard or clear. It try to make a fine judgment which
is based on a distance and an angle from it to the ball.

Although the goalie is in guard, its localization may become out of order.
Because, for example, it is pushed by other player or unfortunately missed
the former localization. DFposit can reset its own localization with guard
position. Naturally, if it judges it is wrong position, it sets itself position
again.

Our goalie has many advantages and, however, has many disadvantages
too. We had had serious problem till halfway. Our localization was incor-
rect enough for goalie because it needs more exact localization than other
position. It could not have correct localization and ball position. Under this
condition, it was not competitive. Moreover, we were confused by starting
white line detection which supports players localization. So we needed much
time for work of an improvement. But our localization had kept improving
for RoboCup.

Because we did not care speed of the ball, we could not defence based on
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Figure 7.15: Behaviors in position.

predicting the ball. Especially it is very effective that the goalie recognizes
the shoots which become outside to own goal. The goalie several became
bad posture by reacting such shoots, so we have to improve that early.

In addition to these, it makes setting conditions of states not well-defined
that we cannot recognize the enemies.

The next needs the localization which is correctly, is speedy and do not
have to change its position.

7.4.1 Position

This state which is most important for the keeper is called first and several
time when it is in other states. When the keeper is in this state, BhLocSw3
is called and the keeper checks the beacon’s locations. It moves to its right
position by BhPosGB with a right information which based on this infor-
mation. In case it is caught by anything, we take measures to. If some time
is passed without changing the goalie location, the process runs from the
beginning. We use timer for this.

We explain transition to another state. If the ball is near the goalie or
the own goal, it calls clear. This transition is the only transition without
over position. When its move was over, its next state depends on the ball
angle. If the goalie can watch ball and the ball is in thirty degree in front
of it, the next is guard. In other case, the next is search. This transition is
designed with why the goalie deals the situation that is in probability order
to give goals.

7.4.2 Search

This state is called when the goalie is in position and able not to find a ball.
If this state is transited, the goalie is in guard position and searches ball.
It is because BhSrGd runs. If it can find the ball, its state is changed into
guard. Or if it recognize to be in wrong position, its state is changed into
position. It is designed very simple. Because if the goalie finds the ball, its
state is changed into guard and decide its next action at guard in almost all
situation.
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Figure 7.16: Behaviors in search.

Figure 7.17: Behaviors in guard.

7.4.3 Guard

The guard is the key of state transition when the goalie is in front of own
goal. Because it is able to change all other states. If the goalie can watch
the ball for a long time or near the own goal, its state is changed into clear.
If it is in wrong position, its state is changed into position. Or if it gets lost
the ball, its state is changed into search.

And its state is changed DFposit for localization every some time in
guard position. This is controlled by the timer.

7.4.4 DFposit

If the ball is far from the own goal, we cannot make shoots given up. So we
designed the goalie spend this time for localization. This state is similar to
the above state – position. When this state is called, it localizes with guard
position. And if it had the wrong position, the position is called. What is

Figure 7.18: Behaviors in DFposit.
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Figure 7.19: Behaviors in clear.

Figure 7.20: Changing states in goalie.

different from the position is positioning with guard position.(The position
is positioning without guard position.) This is comes from that we estimate
the goalie is almost in front of the own goal when it changes this state.

7.4.5 Clear

At almost all of the above state, the goalie does anything -positioning or
localization. This is why it is very effective to decrease goals given up by
long shoots to be in guard position. But the goalie has necessity to clear
the ball when it is near the own goal because friend players cannot help it.
Clear is the primal state to change in almost all of the situation when the
ball is near the goalie or the own goal. When this state is called, the goalie
approaches the ball by BhAppF which is suited for approaching from middle-
far range.(But BhAppF is hardly called.) Following this, the ball distance
from goalie become short, it approaches by BhAppN which is suited from
near. The end of approaching, the goalie clear the ball by BhShGk.

The goalie is often far from the own goal with wrong localization after
clearing the ball. So it changes state to position and readies to the following
attack.
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7.5 Behaviors

Since filenames must be 8 letters or less in Aperios, the filenames of behaviors
is represented as an abbreviation of several words that show the acts of those.

7.5.1 BhAppFF

The behavior works when a player approaches the ball on a far distance. It is
a purpose of the behavior that the player approaches speedy and accurately.
The relative ball angle gives a player one thing of three actions. While the
ball distance is more than 400mm, the behavior is working and the player is
doing one thing of three actions. If the ball distance is less than 400mm, the
behavior stops after the player brakes. First, action which is going ahead
when the relative ball angle is less than 20◦. Second, action which is curving
when the relative ball angle is more than 20◦ and less than 40◦. Last, action
which is turning when the relative ball angle is more than 40◦. It explain
the three actions as follow.

Going ahead is managed by the function b:far(). When a player finds
the ball and stops in the front of the ball in a moment, the function in the
behavior works and the relative ball angle gives the player one of the action.
If the relative ball angle is less than 20◦ and the function is working, the
player goes ahead as follow. The player gradually accelerates until its speed
is a top speed. If the player suddenly accelerates, the slipping player makes
an error in the localization. While the player is going ahead, it swings its
neck and checks goal. Out team’s system does not have an ability to localize
in a moment, but the player checks the goal and remembers in a direction
of the goal and shoots the ball in the direction. When it swings its head, it
returns its head in a moment which it finds a goal. When the ball distance
is less than 400mm, the function stops and the function b:near() starts

Curving is managed by the function b:curve(). When the relative ball
angle is more than 20◦ and less than 40◦, the function works. The function
is next to b:far(), so a player’s speed is a top speed. Walking is unstable
when the player moves forward and side direction in a top speed. So when
the player walks sideways and forward, it has to control its speed.

Turning is managed by the function b:turn(). When the relative ball
angle is more than 40◦,the function works. While the function is working,
the player stops there and turns in the direction of the ball.

These functions is working ,while the ball distance is more than 400mm.
When the ball distance is less than 400mm, the function b:near() starts. In
the function the player’s speed slow down and the behavior stops.
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BhAppN
BhAppFG

Approach

Figure 7.21: The player’s moving when Attacker is approaching.

7.5.2 BhAppN

This behavior works next to “BhAppFF” before a player shoot the ball(Fig. 7.21).
In other words, BhAppN is between “BhAppFF” and “BhShSS”. It is impor-
tant that a player accurately and speedy approaches the ball for shooting.
When the ball moved by a player goes away from the player moving in low
speed, the behavior stops and “BhAppFF” starts. In this case it is that the
ball distance suddenly increases that the ball goes away. If it is that the ball
distance increases that the ball goes away, the player does a wrong thing.
Because the ball distance which is involved in the vision and the condition
is unstable. However it is most important to adjust parameter which our
team can not automatically set in the behavior. That has two reasons. One
is that the ball distance is involved in the vision. Second is the ball distance
is involved in a parameter of “BhAppFF” when the behavior starts. If a
player has a bad parameter, it has some problem that it hits the ball or
slowly approaches.
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BhSuFG

Support

BhSupp

Figure 7.22: The player’s moving when Attacker support.

7.5.3 BhSuFG

This behavior works when an attacker in state of “Support” approaches the
ball. This script is based on BhAppFF, but it stops earlier than BhAppFF.
The attacker in state of “Support” supports the other player which is near
than it. So it has to stop more far than the other player and support.

7.5.4 BhSupp

This behavior works when an attacker in state of “Support” approaches ball.
The attacker stops not to disturb the other player which is nearest to the ball
in my team, but to support it(Fig. 7.22). There are some ways to support ,
but we only make the player stop. Because the information which an other
player sent is not accurate, the player receiving information do not know an
accurate position of the ball. If it does something to an information of the
ball, it wander. But if a self localization and the information will be more
accurate than now, we will be able to do various based on the information.
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BhGp

Figure 7.23: The player’s moving when BhGp works.

7.5.5 BhGp

This behavior works when a defender in state of “Approach” and “Support”
watches the ball which is out of our team’s territory and in own goal’s area.
The behavior makes a defender watch the ball and move between the ball
and the own goal(Fig. 7.23). Because many team’s player shoot the ball
to the goal, it is a good result that a defender does so. Then the defender
efficiently finds the ball which is shot by the opposing player. While the
defender is moving, it swings its head and checks the beacons for localizing.

7.5.6 BhSrDwn

This behavior works when players in state of “Search” do not watch the
ball. A flag memorizes in a direction of the ball which a player lost sight of.
First the player turns the neck in the direction memorized by the flag. If it
does not find the ball, it turns the neck in another direction. The behavior
makes it search for a near place.
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7.5.7 BhSrSin

This behavior works next to BhSrDwn. It makes a player search the ball
on a far place when the player finished searching the ball on a near place.
It starts when BhSrSin finished. It makes the player’s neck turn to the
opposite direction.

7.5.8 BhSrTuS

This behavior works next to BhSrSin. If a player does not find the ball
forward, it makes the player search backward. The neck is inclined a little
in the direction where the ball disappeared. And the player turns around
for searching backward. Then doing so comes to see the more distance.
Moreover, there is an advantage that it becomes easy to see the ball when
other players hides the ball.

7.5.9 BhSrWk

This behavior works when a player in state of “Search” finished searching
around. An attacker searches the ball in opposing team’s territory and a
defender searches the ball in our team’s territory. The behavior gives the
player the searching position. The player turns in the direction of searching
position. It walks for searching position(Fig. 7.24). If it only walks, its
localization becomes inaccurate. Then it checks the beacons and the goals
when it walks for searching position. The behavior stops, if the player arrives
at the searching position. The searching position of each player is different,
it is written in “JPLib/Env.lua”.

7.5.10 BhTrSin

This behavior works when a player in state of “Track” searches the ball
which based on the ball information sent by another player. First a player
receives the ball information sent by another inaccurate localized player.
And the player makes tilt2 an angle calculated from the ball information.
Next it swings its head and searches the ball.

7.5.11 BhTrWk

This behavior is next to BhTrSin. A player swings its neck and walks for
the position of the ball information(Fig. 7.25). The function is input an
absolute position of the ball information into and makes the player walk for
the position of the ball information. But it has a disadvantage that the ball
information sent by the other player which has an error in localization is
inaccurate.
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BhSrWk

Figure 7.24: Each player’s moving when they are searching the ball.
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BhTrWk

Figure 7.25: The player’s moving when BhTrWk works.
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7.5.12 BhLocSw3

This behavior is called when the player sets its own location. It is often
called because it may set wrong location with odometer only. When it is
called, the player moves its head from left or right side to the other every
forty degrees. If the player could have found over two beacons at the end
of this moving, it refreshes its own location. It moves its head forward, this
behavior stops.

7.5.13 BhPosGB

This behavior is called when the player wants to go to its right location with
facing the opposite goal. It is used as positioning for the goalie because it,
in many cases, has an advantage in the point of which it can move with
understanding the situation of the court. When this behavior is called, the
player moves its head to three directions and tries localization. In the case
it could find over two beacons, it refreshes its own location with being based
on the beacons. Such its head moving is done at regular intervals. The
player, in this way, often refreshes its own localization. By this localization,
it turns toward the opposite goal and walks to the designated location with
watching the ball. This behavior stops when the player is in the designated
location with looking forward.

7.5.14 BhLocGd

This behavior was made for the goalie. It is good chances for the goalie to
understand its own location because it is not moving when it is in guard
position. When it is called, the player becomes the guard position. After
this, it renews its own localization like BhPosLoc3.

7.5.15 BhSrGd

This behavior was made for the goalie. It is difficult for the opposite players
to score when the goalie is in the guard position at fine location. So it has
to find the ball and becomes in the guard position as near from the ball as
it can even though it is in guard position in front of own goal.

This behavior is called when the player understands its own location.
When it is called, the player becomes the guard position. After this, it
moves its head from left or right side to the other.

So this behavior has an advantage that it is easy for the player to save
shoots even if it has not found the ball yet.

7.5.16 BhGdOd

This behavior was made for the goalie. It is called when the player knows
both its own location and the ball one. When it is called, the player keeps
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moving its head toward the ball. And it walks to the side which the ball is
inside of the goal area if the ball is far to the left or right from the player.
It becomes the guard position at its right location.

Once this behavior starts to run, we need writing ”behavior:setInitial()”
expressibly to stop it.

7.6 Old Behaviors

7.6.1 BhAppIA2

This is the first behavior we made. It works when the player watches the
ball, and the player approaches and turns to the ball. But in the behavior
the player accelerates and stops suddenly. And when it turns, it turns more
angle than the ball angle. Because the ball angle is not an angle the ball
with rotation axis.

7.6.2 BhAppMCL

This behavior is based on BhApp. But it differs from BhApp in the ball
distance and angle. In BhApp they are calculated only when the player
watches the ball. But in this behavior they are calculated and memorized
in few time. If the player does not watch the ball in a moment, it chases the
memorized ball.

7.6.3 BhAppCB

This is used in AtHk7T when it is approaching. For checking self localization
it swings its head right and left.

7.6.4 BhAppFG

This which is based on BhAppCB is used in At9ts. For checking self local-
ization it swings its head right or left which is decided by the target goal’s
angle in Monte Carlo. A difference in swinging its head cuts the waste time
and makes it stable.

7.6.5 BhAtPos

This works when the attacker does not watch the ball and receives the ball
Information which is sent by the other player. It moves between the ball
and the searching position(Fig. 7.26).
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BhAtPos
searching position×

Figure 7.26: The player’s moving when BhAtPos works.
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Chapter 8

Shot Motions

8.1 Introduction

It requires that the all acts of kicking the ball that include ’pass’ and the
’shot’ will be called a shot. Excluding shots used in the special environment,
the shots that has wide runs batted in a short motion, and an accurate,
strong power is liked The sensor also that is the sense organ of Aibo has
concentrates on all aspects of Aibo. It is assumed that the ball is in front
for Aibo when the shot is developed and does the shot development. But it
is difficult to develop the shot of the ball in front side. A center of gravity of
Aibo is originally around little bit back about the forefoot. So, the influence
power of the forefoot is stronger than that of the hind leg. The hind leg
slips when both the forefoot and hind legs are extended at the same time
aiming at outside of. To shoot a front ball, some devices are needed.

There are roughly separately three kinds of parts used when Aibo shoots.

• head

• legs

• body

After this, it explains the process of the shot development of each part.

8.2 The shot development tool

Special motions represented by the shot were developed with Motion Editor.
Motion Editor is made by Jolly Pochie with python. This work is very
simple. It decides each joint’s angle and the time that is spent to change
the state. A motion is made from many states. It is possible that we can
order directly to Aibo by motion editor. This makes the shot development
easier.

83



　　　 　　　

Figure 8.1: Aibo’s shot parts
　　　

8.3 Development of shot with head

The head is a shot part most often used. The reason is that the ball can
fly if there is a ball in the front only it bows without devise. But, that is
not the shot that has wide runs batted in a short motion, and an accurate,
strong power. The reason is described.

At first, it is a cause that the motion of the first joint (tilt1) of the neck
is one of the slowest one in all joints. It is needless to say that the shot
motion is slow because the speed at which the head is lowered is slow. The
power of the shot weakens, too, when the speed is slow. When thinking
about the shot that uses the head, it is necessary to devise the method of
bowing besides tilt1 is moved.

Secondarily, the head of Aibo is in no so much largeness. The width is
almost the same as the diameter of the ball. With this, the shot cannot be
stricken if the ball is not in the presence.

Thirdly, it is in rounding of the head of Aibo. The ball doesn’t run
straight if the ball doesn’t hit the center of the head because it draws the
curved surface.

Therefore, some devices are necessary for the shot. The process of the
device is written as follows.
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Figure 8.2: the shot with head
　　　

8.3.1 Direction of ball running

At first, it thought the ball run straight.
If the ball doesn’t run in the intended direction, the ball goes out and

does the own goal. When shooting the ball, the both arms are put out
to previous in parallel. The direction that the ball runs to is definable by
putting and the shot of the ball between arms. At this time, it is necessary
to draw the jaw. Because the shot ball narrows between the mouth and the
body when there is a space between the mouth and the body.

8.3.2 Power of shoot

Next, we made the power of the shot stronger. The ball shot weakly is slow,
run little distance and is robbed by opponent easily.

The most general method of doing the shot of strong power is to use the
weight of Aibo. The weight of Aibo is heavy with 1.6kg. We use the force
when this object falls from high position. The body part of Aibo is very
heavy compared with the leg and head parts. Aibo’s weight concentrates on
body part. Therefore, lifting the body is necessary to make the shot to use
the weight of Aibo. But the weight of Aibo is heavy for Aibo too. Lifting
the body by one leg is very difficult. Aibo cannot lift its body fast. It is
necessary to use front both legs or hide both legs.
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Figure 8.3: the shot with leg
　　　

8.3.3 Wide batting area

Batting area is area that Aibo can shoot and the ball run direction intended
to some degree. To have wide batting area is important. When batting area
is not wide, the shot of Aibo is easily failed and this shot cannot be used
at the actual games. But, it is necessary to put the ball between arms so
that the ball runs straight. Therefore, batting area is limited. We have the
motion that catches ball before the shot. The motion that catches ball put
the ball on sweet spot where Aibo can shoot the most powerful.

8.3.4 Shot test

We develop the shot that has correct direction of ball running, strong power
of the shot and wide batting area. We use this shot in the actual game. The
ball robbed before catch ball. When Aibo was shooting the ball, opposing
Aibo enclosed it and disturbed the shot. The shot must be short motion.
But, the motion that catches the ball and the motion that lift Aibo’s body
take much time. Another viewpoint is necessary for development shot.

8.4 Development shot with legs

The shot with legs is difficult. Because Aibo’s weight concentrate on body
part, it is difficult that the one leg is made free. The leg move in parallel
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to ground when Aibo shoots with leg. So it is difficult that Aibo uses itself
weight. Aibo’s leg draws curve, the ball do not run straight. We tell how
we solve these problems.

8.4.1 How to shot

We make Aibo to stand only three legs to make the one leg free. It doesn’t
use for the shot but the forearm is adjusted in. Width of hide legs expands a
little and Aibo stabilized. We confirm Aibo does not fail down when another
front leg expands as much as possible. Aibo shoots the ball to use this leg.

8.4.2 Power of shoot and wide batting area

Leg angle tilt1 is faster than head’s tilt1. The ball easily runs when Aibo
can shoot the ball. The leg is some length, so this batting area is wider than
head one. These are advantage of the shot with leg. But to make very strong
shot is difficult. When it swings the leg, it swings the head to strengthen
centrifugal force and its hind legs extend to put its body out ahead.

8.4.3 Quick motion

The shot that had strong power and wide batting area would have little
sphere of activity, if the shot was long motion. Quick motion is one of the
most important factors. The shot with leg is separated two motions. The leg
expands and the leg put out ahead. If these motions are made one motion,
the shot with leg is short motion. But, this is very difficult. Aibo can not do
weight shift well and can not make one leg free. When one leg expands the
leg touches the ball. So when Aibo shoots the ball, Aibo shifts not only one
leg but the entire body. When the one leg expands Aibo put up its body
a little. It comes to be able to extend the leg sideways quickly. The leg is
not so put out ahead. Batting area is narrow. But the motion of the shot
is very short and after the shot Aibo can start walking easily.

8.5 Development shot with body

When Aibo shoots by body, it must put the ball under body before the shot.
It is difficult. Because the body must be lifted higher than ball, the motion
of the shot with body is very long. When Aibo shoots by the body, Aibo’s
front legs are mostly ahead of Aibo. So, the ball shot by body runs straight.
The shot uses the weight of the Aibo enough. The shot is too strong rather
than strong.
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Figure 8.4: the shot with head
　　　

8.5.1 Head shot and body shot

The way of the shot with body is like to the way of the shot with head. The
know-how when the shot with the head is developed can be made the best
use of development of the shot with the body.

8.5.2 short motion

We examined how to lift up the body fast, but we can not find. We thought
that it was a limit of the motor. When we examined, the load was put on
the motor of Aibo too much and the motor was broken. The shot with the
body is very strong. So the shot was not used in opposite area. We finish
the development of the shot with the body.

8.6 Select the most available shot

We developed various shots here. The shot necessary in each scene is dif-
ferent. We have to select the shot in each scene. We use ShootSelector.
ShootSelector evaluates the shots by the ball position after the shots. It is
necessary to input the shot’s information such as distance and direction of
ball running. ShootSelector decide the position from this information. But,
because the ball is not complete globe, the ball does not run straight and
fast. Accurate distance and direction of ball running can not be inputted.
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8.7 The result and the prospects

The influence of environment was smaller than walking and recognition of
brightness but the shot was influenced. Adjustment was needed at the hall.
This adjustment was done by men, so this adjustment was not extremely
accurate. The shot was successful at the laboratory but it was often failed
at the hall. Sometimes the shot that ShootSelector decide was not good.
At the result, I know the shots had much incomplete part. Especially, that
transition from walking state to the shot motion was not smooth was a big
problem.

8.8 Nageppanashi German

ref:”BhGrmn”
The field was changed since RoboCup2005, so the ball can go out of the

field. If using simple shoots as usual, it is difficult to keep up with the new
field. In the new field, too strong shoot often put out the ball. So we need
reliable shoot for the purpose carrying the ball to opposing goal.

The following sections explain structure of the shoot named “Nagep-
panashi German”.

8.8.1 Step forward for catch

ref:”JPlib/cmotion.lua/cmotion:approachCatch”
At first, a player catches a ball.(Fig.8.5)
Then too large motion hinders smooth state transition into next motion.

So we use step forward with catching.
In “Behaivior:BhAppN”, a player approaches the ball until the distance

to the ball becomes below a parameter that we decided. This parameter is
so delicate. If a player has a bad parameter, it has some problem that it
hits the ball or slowly approaches. But the best parameter to approach the
ball is not so suitable to catch it. So after “Behaivior:BhAppN”, a player
adjusts its position to catch the ball.

8.8.2 Catch decision

After the motion to catch the ball, a player decides if the catch was success
or not. If a player can see a ball, it decides false. Because if catch is success,
a player cannot see the ball. When succeeding in catching the ball, a state
transitions into “Nageppanashi German”.

8.8.3 Nageppanashi German

ref:”JPlib/cmotion.lua/cmotion:GermanStart”
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In “cmotion:GermanStart”, a player turns by an input angle, and throws
out the ball.(Fig.8.6)

The motion changes according to the direction of the turn and the width
of the turn. As a result, throwing the ball often failed. We build a flag by an
input angle to solve it. As a result, a player chooses better motion. In “Be-
havior:BhGrmn”, a player calculates the angle to opposing goal position by
MonteCarlo, and inputs it “cmotion:GermanStart”. But if a player notices
opposing goal, it uses opposing goal position by Vision.

Figure 8.5: Step forward for catch. Figure 8.6: Nageppanashi German.

8.8.4 Origin of name

“Nageppanashi German” was named after the following sentences.
“Nageppanashi” means “throw out” in English. This dynamic shoot is

associated with a Japanese professional wrestling technique “Nageppanashi
German Suplex”. We are inspired by German Team to develop this shoot.
So this shoot was named “Nageppanashi German” in respect for German
Team.

8.9 Abe shoot

ref:”BhShAb”
This shoot is a strong and accurate shoot to the front side. It is condi-

tioned on catching the ball.
The following sections explain structure of the shoot named “Abe shoot”.

8.9.1 Step forward for catch

At first, a player catches the ball the same as in Sec8.8.1. So a player adjusts
its position to catch the ball the same as in Sec8.8.1.
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8.9.2 Catch decision

A player decides about catch the same as in Sec8.8.2. When succeeding in
catching the ball, a state transitions into “cmotion:catchTurn” (Fig. 8.7).
This turn is a part in the first half of Abe shoot.

8.9.3 Abe shoot

In “BhShAb”, a player turns by an input angle, and shoot to the front
side.(Fig.8.8)

If it is not so accurate, a player often puts out the ball. In “Behaiv-
ior:BhShAb”, a player calculates the angle to opposing goal position by
MonteCarlo, and inputs it to “cmotion:catchTurn”. But if a player notices
opposing goal, it uses opposing goal position by Vision.

After the turn, a player calculates the angle again by way of precaution.
If the error margin is too large, a player turns again to adjust position.

Figure 8.7: Turn with ball. Figure 8.8: Abe shoot.

8.9.4 Origin of name

This shoot was produced in RoboCup 2005 league.
“Abe shoot” was named after shoot producer’s name.
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Chapter 9

Bots

9.1 Players

Since strategies for soccer are described in Lua scripts, we can use the same
bot in attacker, defender, and goalie. As far as goalie concerned, we used
a localization module using line information in penalty area, because we
had not developed a localization module using all line information at first.
We could develop many modules, and many bots during the competition,
because an old module can be easily replaced with a new module to make
a new bot in our framework. We have developed new modules according to
problems occurred during the soccer games in the RoboCup competition, as
follows.

BasicPlayer7
The bot BasicPlayer7 has developed before the competition. Fig. 9.1
shows the dependence of every module (except for debug modules) in
the bot.

BasicPlayer7cc
The bot BasicPlayer7cc is a version using the vision module CDT-
BoxTable5JPM that uses camera calibration method on trial, instead
of the module CDTBoxTable3JPM.

BasicPlayer8
The bot BasicPlayer8 is a version using the vision module CDT-
BoxTable6JPM that speeds up camera calibration, instead of the mod-
ule CDTBoxTable5JPM.

BasicPlayer8strict
The bot BasicPlayer8strict is a version using the ball recognition mod-
ule DetectBall9JPM that reduces recognition errors, instead of the
module DetectBall8JPM.
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Figure 9.1: The module dependence of the bot BasicPlayer7．93



BasicPlayer8mcl3
The bot BasicPlayer8mcl3 is a version using the self localization mod-
ule SelfMCL3JPM with line information instead of the module Self-
MCL2JPM.

9.2 Capturing Images

We used tha bot ImageCapture7 to take pictures with AIBO’s camera. Using
this bot, we could take some pictures in various positions that we want to.
We also used the same bot as the bot used for players, so that we could get
the images that AIBO was seeing in the game. Using the images captured by
this bot, we could more exactly make the color table, and debug for vision
modules.
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Chapter 10

Tools

10.1 Motion Editor

When we create static motion (shoot, pass, guard, ...etc), we use our original
motion editor (Figure 10.1). The basic usage is so simple; input angles for
each joints, and repeat this for a number of frames. Details of this tool are
mentioned below.

10.1.1 Main Window

This tool has two window; main window (has grid area) and control window
(has many buttons). Parameters for each joint angles are input in the grid
area. It has 16 rows: 15 rows of them are for joint angles and 1 row for
time interval. The number of columns can be configured by yourself as
a command line argument (the default is 32). Columns are for frames of
motion, like animation cells.

Many numbers in this grid, represents robot’s joint angles or time inter-
val, are may be mathematical scheme of python. For example, 30, 30*2,
(10+15)*sin(pi/6), or last/2 are allowed. A special parameter last
means the last value, so if a joint angle was 30, then last/2 in the next
column will be 15.

The cells for time interval means a number of steps. For time interval n,
robot plays this motion spending about n*8 [ms]. In fact, the value smaller
than about 10 has no accuracy.

10.1.2 Control Window

The control window has 10 buttons, 1 spin box, and 1 text box. Their usage
are below.

• Send Angles
Send a selected column to the connected robot. This button will be
used when you check joint angles.
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Figure 10.1: Motion Editor

• Capture Angles
Capture joint angles of the connected robot. When angles were cap-
tured and received, parameters on the selected column will change to
received values.

• Send Motions
Send selected columns (motion) to the connected robot. You must
select columns or set “Motion Num” when use this button.

• Copy
Copy selected cells. This is useful when you create a motion which has
repetitive motions.

• Paste
Paste the values to selected cells. This will be used with “Copy”
button.

• Ins Row
Insert new column to the current position. (Attention to confusing
name “Ins Row”.)

• Del Row
Delete current column.

• Clear
Clear selected cells and set default values.
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• Evaluate
Evaluate selected cells if they were written by mathematical scheme.
Note that you must evaluate all cells on the grid when save the motion
and copy the file to the memory stick.

• Change LR
Shift left and right on selected cells. Left shoot will be right shoot.

• Motion Num
Motion number which you want to send to the connected robot. For
“Motion Num” n, column 1 to column n will be send as a motion.

• Play Speed
Play speed of motion. “Play Speed” 2 lets motion playing time half.

10.2 Camera Calibration

The ERS-7 camera has a serious vignetting effect (radiometric distortion),
which makes the image appear dyed in blue at the corners, as is pointed out
by GermanTeam [2] and others. Since our object recognition is based on
color classification, the blue cast on the corners of the images disturbs correct
recognition. By reading the technical report 2004 of GermanTeam [2], we
decided not to correct the geometrical distortions of the images due to lens
effects, because it does not seem to pay the computational cost. However,
the color distortions cannot be overlooked for our object recognition, so that
we decided to correct it.

A general goal of color corrector is to find a good function

(Y ′, U ′, V ′) = F (x, y, Y, U, V ),

where (Y,U, V ) is an original color of a pixel at (x, y), and (Y ′, U ′, V ′) is
the corrected color. If there is no color distortion, Y ′ = Y , U ′ = U , and
V ′ = V for any x and y. Since the image captured by ERS-7 is apparently
distorted, we have to find a good approximation of F from various observed
data. Moreover, F has to be computed efficiently. We dealt with this
problem as follows. First we simplify the problem by assuming that Y ′ (U ′

and V ′, resp.) can be determined by the position (x, y) and Y (U and V ,
resp.). That is, we will find three functions FY , FU , and FV

Y ′ = FY (x, y, Y ),
U ′ = FU (x, y, U),
V ′ = FV (x, y, V ),

instead of finding F . Moreover, since the color distortion seems to be radio-
metric, we also assume that Y ′ can be computed by

Y ′ = FY (r, Y ),
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where r is the distance between the position (x, y) and the center (xc, yc),
that is r =

√
(x − xc)2 + (y − yc)2. Since the computations of U ′ and V ′

can be treated in the same way, we will only mention about Y ′ in the sequel.
We tried the following two methods.

10.2.1 Color Correction based on White Color Only

First we tried a simple method, where we assumed that the distortion of
Y ′ depends on the position (x, y) but not Y value. That is, assuming that
FY (r, Y ) can be represented by

FY (r, Y ) = f(r) ∗ Y.

The function f(r) is experimentally determined using the image of white
wall captured by ERS-7 as follows. Let Yx,y be the intensity of Y chan-
nel at pixel (x, y). Let C be the average intensity of the pixels {Yx,y |√

(x − xc)2 + (y − yc)2 ≤ 10}, and Cr be the average intensity of the pixels
{Yx,y |

√
(x − xc)2 + (y − yc)2 = r}. Then

f(r) =
{

1.0 (if 0 ≤ r ≤ 10)
C/Cr (if 10 < r).

Unfortunately, it turned out that the method is not very effective to correct
all colors. It means that a single color is not enough to determine the color
corrector.

10.2.2 Color Correction based on Various Colors

In order to get more accurate color correcting function FY (r, Y ), we have
to use various colors. However, it is not so easy to prepare various color
sheets, and it is quite time consuming task to capture the images of all
these sheets by hand. Thus, we utilized a display of PC (Fig. 10.3). We
wrote a simple script, which shows various uniform colors on the display
one after another, and sends ERS-7 a command to capture the image. Then
ERS-7 sends back the images to PC, and these images are saved into the
disk. By analyzing these images, we get the curves of the distortion for
various intensities. Fig. 10.2 shows some of these curves, although we used
a huge number of colors. By interpolating these curves continuously, we
have the surface G(Y, r). Then we get the color correcting function F (Y, r),
as a reverse of G(Y, r), that is F (Y, r) = Y ′ with G(Y ′, r) = Y . We represent
the function F (Y, r) as a lookup table.

Fig. 10.4 shows a result of the color corrector.

10.3 Simulator for Robot Scripts

Using a real robot for testing a script takes a lot of trouble. A real robot
will break down easily. A real robot will run out of juice within a hour. A
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Figure 10.2: Distortions of Y, U, and V planes. The horizontal axis repre-
sents the distance to the center (minus 10), and the vertical axis represents
the average intensity.
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Figure 10.3: Automatic camera calibration process. Various uniform colors
are shown in the display of PC one after another, and the captured images
by ERS-7 are saved into the disk of PC via TCP connection.

Figure 10.4: Original image (left) and corrected image (right).
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Figure 10.5: Execution of our simulator

real robot never makes the same behavior twice in the real world. A real
robot provides debugging information via only wireless LAN. Therefore, the
need of a simulator (fig. 10.5) that executes a robot script presents itself to
improve the development.

Fig. 10.6 shows the outline of the implementation of the simulator. the
left side shows the real world including a robot program, and the right
side shows the virtual world in the simulator. For easier comprehension,
we divide the real world into three components: an environment, active
modules, and passive modules. We can make the simulator by simulating or
emulating these components. This will enable us to run the same script in
both real world and virtual world.

A pseudo environment is the component that simulates the real envi-
ronment, including a soccer field, a ball, and robots in a real world. Since
these objects are represented as 3D models, we can visually check whether
a virtual robot can see a ball or not in the simulator. We implement these
objects in VPython [8], which is a 3D graphics module for python. Fig. 10.7
shows a model of AIBO in our simulator. It is a very simple model, which
has only a body, a neck, and a head, but this way adequately realizes that
robots ideally work in the simulator, as if the robots have omni-directional
wheels, and an accurate vision system.

Pseudo active modules are the components that emulate active modules,
which are modules that need to call lua functions. An active module has a
function called at regular intervals or at the time an event happens, that is,
a special function shown in the previous chapter. Specifically, pseudo active
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Figure 10.6: The outline of the implementation of the simulator

Figure 10.7: The pearly white very simple model of AIBO.

102



modules consist of a mind module, an action module, an UDP module.
Pseudo passive modules are the components that emulate passive mod-

ules, which are modules that will be called in lua functions. Specifically,
passive modules consist of a locomotion module, a shoot module, a self lo-
calization module, a ball localization module, and so on. Since the simulator
know the accurate global positions of a ball and robots, and the distance of
one step that was measured by a ceiling camera, we do not need to calcu-
late them in the simulator. In addition, the simulator do not have to change
LED colors, play sounds, and so on. Therefore, we only have to define simple
dummy functions on Lua side as follows.

soundPlayer = {}

function soundPlayer:playSoundOnce()
end

function soundPlayer:playSoundStop()
end

In conclusion, the simulator increased the development efficiency dra-
matically, because we could develop many robot scripts all over the place
(e.g. in our house, in airplanes, and in any hotel) without real robots. As
a matter of course, since robots in the virtual world are in some degree dif-
ferent from them in the real world, it is necessary to test these script in the
real world at the end. Nevertheless, the simulator will certainly reduce the
heavy burden to test a robot script with a real robot. Moreover, since a
real robot can communicate with a virtual robot via UDP, we can establish
a multi-agent environment in the real world by using only one real robot.
This makes it easy to practice team play, which needs more than two robots.

10.4 Position Visualizer

A position visualizer (fig. 10.8) is a tool visualizing various positions of a
robot, a ball, beacons, and so on. Using the position visualizer, we can
check the accuracy of a self localization module, a ball localization module,
a ball recognition module, and a beacon recognition module. If a script does
not work well, we can find where the reason is, especially in the modules.
The position visualizer acts, in a manner, as an intermediary between the
simulator and the real world.

The position visualizer was developed based on the simulator. The fol-
lowing is an illustration about objects shown in the position visualizer. Each
object in the position visualizer may be the same position as that in the real
world, if we can develop a robot program ideally.
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Figure 10.8: Position Visualizer

• An aibo model shows the position of a robot calculated by a self lo-
calization module.

• An orange ball model shows the position of a ball calculated by a ball
recognition module.

• A red ball model shows the position of a ball calculated by a ball
localization module.

• Redundant beacon models show the histories of the positions of bea-
cons calculated by a beacon recognition module.

The positions of the objects are automatically updated at regular time
intervals. The position visualizer can ask the modules about position infor-
mation using a remote control module RCLuaScript, and update the posi-
tions using the answers. The module RCLuaScript allows us to execute any
Lua script code via TCP. The following is Lua functions, which make some
values a character string, used in the position visualizer.

mcLocalization:toString()
This function returns a character string made by joining the positions
x, y, and t of a robot.

body:headToString()
This function returns a character string made by joining the joint
angles tilt1, pan, and tilt2 of the head of a robot.
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detectStatus:ballToString()
This function returns a character string made by joining the distance
dist, and the angle pan of a ball.

ballMCL:toString()
This function returns a character string made by joining the distance
dist, and the angle pan of a ball calculated using Monte Carlo method.

detectStatus:historyToString()
This function returns a character string made by joining the histories
of the positions of beacons.

In order to receive the returned values, We have to send a script code as
follows. The module RCLuaScript returns a value assigned in “retRC”.

retRC = mcLocalization:toString()
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Chapter 11

Technical Challenges

11.1 The Open Challenge: AiboLingual

AiboLingual is the program which was made for Open Challenge. We de-
veloped it obtaining hint from “Bowlingual” which translates barks.
But game hall is so noisy that transfering data to AIBO by the sound is
difficult, thus this program communicates with ear, face or back LED. Con-
cretely, it transfers data between AIBO’s LED and USB camera connected
with PC. Then data is decoded on the PC and the character is displayed.
Applied plan to the soccer is as follows.

• Means of communication between AIBO without wireless LAN

• Output of AIBO’s state by means of LED under situation in which
wireless LAN cannot use

We cannot achieve them, because its transfer rate is slow and it cannot
correct error. So our next challenge is to solve these problems.

11.1.1 Bot

We use the bot which flashes LED for AiboLingual, but such bot is included
in Atacker’s one. So we used it as is.

11.1.2 Input Device

Input device is “Logicool QcamPro4000”.
This camera’s interface is USB1.1, so transfer speed is not fast. Thus,

this part became problem when data transfers. It was necessary to use the
device transfer rate is fast.
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11.1.3 Transmission program

AIBO has ear, face and back LED. But face and back LED cannot recognize
well, because a range they flash is narrow and the number of colors is few.
So we decided to use ear LED.
Ear LED can blink easily by using Lua script. From this, we decide to
transfer data by flashing AIBO’s ear LED continuously. Colors we use are
yellow, blue, green, red, and purple. These colors are the most recognizable.
Among these colors, purple uses as control signal.
Next, we explain a concrete method. This method is so simple. First, each
character of sentence that we want to transfer changes ASCII code which
is shown by decimal number. Second, this code changes quinary number.
Finally, this quinary number represents by four colors (yellow, blue, green,
red, and purple), and it makes ear LED flash. Purple is the pause of each
character.

11.1.4 Reception Program

Color adjustment

We make color settings by deciding each color’s HSV range. It is easy to
adjust color recognition, but it is weak to the change of environment. If
it changes even a little, it cannot recognize ear LED’s color. To solve this
problem, we reduce camera’s brightness extremely. By doing so, it copes
well with a change of environment.

Now we are using another color adjustment system. We want to replace
this method with present, and to recognize color automatically in future.

Reception method

Next, we explain a reception method of data. Fundamentally, it makes a
same thing as transmission program in reverse order. It recognizes ear LED’s
color continuously. It changes quinary number into alphabet when purple is
inputed and shows character on the display.
This method cannot get up speed of transfer well. In future, we want to

make more efficient method for solving this problem.

11.2 The Variable Lighting Challenge

We can not use only one color table, because a lighting condition changes
with times in the Variable Lighting Challenge. So, we considered that some
color tables were changed with the time. But, times of changing the color
tables is long. In this year, we changed only a camera calibration. we knew
timings which the lighting condition change. So we changed the calibration
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Figure 11.1: Adjustment Window

with the timing. When the calibration is changed, the Aibo looks own front
arm. The form is fixed when the Aibo looks own front arm. So the Aibo
can get the same condition pictures which have white of own arm and green
of the field on anywhere. Hence, we can change the calibration against the
changing lighting condition.

11.3 The almost SLAM Challenge

This year, we did not achieve a satisfactory result in SLAM Challenge be-
cause of the lack of development time. In this section, we describe only parts
of our approach that have been implemented.

11.3.1 Additional Landmarks Remembrance

The same self localization module as an actual game could not be used in
SLAM Challenge. The robot needed to remember additional landmarks de-
scribed in the rule book. There were at least three landmarks containing a
patch of pink at least 10 cm across, and they were outside the playing are
but on the green field. Therefore, at first, we developed the module that
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Figure 11.2: Output Window

remembered those landmarks for the first stage of the SLAM Challenge. We
divided each edge on the field into twenty parts. We calculated where land-
marks are observed, and incremented the number of counters corresponding
to the parts while the robot went round with observation, because the result
of observations by our vision system had various errors, and those landmarks
were at least 15 cm apart. For each part, if the number of the counter of
a part exceeded the average number of counters, it was decided that addi-
tional landmark exist that part. The parts in which beacons had already
included were excluded.

In Fig 11.3, red cross show the parts in which beacons have already
included, pink circles present that additional landmarks exist in the parts.

Secondly, we developed the self localization module that estimated the
position according to those information. However, we did not have enough
time for testing that module, and did not check a performance of it. The
result was that we did not achieve a satisfactory result.
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Figure 11.3: The result of line recognition
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Chapter 12

Conclusion

The team Jolly Pochie has participated in the RoboCup Four-Legged League
for three years. This year was a first participation as the united team of
Kyushu University and Tohoku University. The collaborative innovation
with two universities made us advance to the quarter finals.

We have improved many things in our system. Especially, embedding
script language Lua into our system had a large improvement in speed of our
development, and applying genetic algorithm for tuning locomotions found
good parameters.

We will continue the development of the soccer simulator and combine
it with machine learning techniques.
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