
Jolly Pochie 2005 in the Four Legged Robot
League

Jun Inoue1, Hayato Kobayashi1, Akira Ishino2, and Ayumi Shinohara3

1 Department of Informatics, Kyushu University
{j-inoue, h-koba}@i.kyushu-u.ac.jp

2 Office for Information of University Evaluation, Kyushu University
ishino@i.kyushu-u.ac.jp

3 Graduate School of Information Science, Tohoku University
ayumi@ecei.tohoku.ac.jp

Abstract. Jolly Pochie participates for the third time in RoboCup
Four-Legged League. This paper presents the main development of our
team in 2005: adjusting gaits parameters by genetic algorithm, embed-
ding a scripting language, and the development of a simulator, which
directly executes the scripts.

1 Introduction

The team “Jolly Pochie [dz̧óli·pót
∫
i:]” has participated in RoboCup Four-Legged

League since 2003. In the last two years, the team consisted of the faculty staff
and graduate/undergraduate students of department of informatics, Kyushu
University [1]. This year it becomes a united team with Tohoku University.

Faculty members
Ayumi Shinohara, Akira Ishino

Graduate Students
Jun Inoue, Hayato Kobayashi, Narumichi Sakai, Kazuyuki Narisawa,
Satoshi Abe, Akihiro Kamiya

Undergraduate Students
Tsugutoyo Osaki, Tetsuro Okuyama, Shuhei Yanagimachi, Yuki Matsumoto

Our research interests mainly include machine learning, machine discovery, data
mining, image processing, string processing, software architecture, visualization,
and so on. RoboCup is a suitable benchmark problem for these domains. Last
year, we had three wins and two losses in the preliminary league. For this year, we
utilized an embedded scripting language in order to accelerate the development
process, and established a simulator which directly executes the script on PC
just as in the robots. In addition, we are developing a new localization technique
for the ball location.

Section 2 introduce our original framework. An overview of the designing
motions and genetic algorithm are illustrated in Section 3. Section 4 shows the
self and ball localization techniques. Section 5 gives outline of our vision sys-
tem. The scripting language and simulator are described in Section 6. Section 7
concludes this paper.



Core Program

UDP Sensor Camera TCP

Action Mind Speaker

etc….

Base Program

Base Modules

inherited Modules

describe practical process

Fig. 1. Jolly Pochie Framework

2 Jolly Pochie Framework

Our team Jolly Pochie has developed an original framework. We created various
modules which have individual functions based on it. Combining suitable mod-
ules, we can design various robots easily. By this framework, each programmer
concentrates on developing each module separately. Fig 1 shows the outline of
Jolly Pochie Framework.

The framework hides the original types and functions in OPEN-R [2], so
that we can implement the modules using the standard C++ class libraries, and
can test and debug the modules in ordinal environments. Each module calls no
OPEN-R functions directly.

Each module inherits the base modules. There are many kinds of base mod-
ules, such as camera module which takes image processing, action module which
computes joint angles in the motions, mind module which selects appropreate
strategy. Especially, the mind module is a central part which controls all the
other modules. Therefore we embedded the scripting language Lua mainly for
the mind module. The mind module has a special function named mindNotify
which is called every 40ms. Strategies are described in this function. For ex-
ample, we implemeted the following procedures, receiving the data from the
camera and sensors, and actuating the robot through action module, and so on.
Moreover, a state transition model is introduced in the mind module, so that
mindNotify calls different functions depending on the states. By embedding the
scripting language Lua as shown in Section 6, we can also write the functions in
Lua scripts.



Fig. 2. Gaits Developing Tool

3 Motion

Designing a good motion, which is quite important in the game, is an apparently
time consuming task. A lot of trials and errors are required. In order to ease these
tasks, we have developed various tools. Fig 2 shows the gaits developing tool.
However, fine tuning of various parameters by hand are very hard tasks. Thus we
have also examined an automatic adjustments by applying genetic algorithms.
The score function evaluated the speed of the gait, by measuring the distance of
the movement for a fixed period, from a camera equipped on the ceiling. After
several thousand trials, we established a fast gait, 429 mm/sec for ERS-7.

3.1 Measurement Environment

In order to capture the position of a robot from the ceiling camera, we use two
colored balls equipped on the back of the robot, as makers. By these makers, the
ceiling camera can determine the location and the direction of the robot easily
and accurately. The robot can receive these information from the camera via
wireless network. Fig 3 shows the robot with the markers.

3.2 Genetic Algorithm

Every gait in our locomotion system is specified by the following parameters.

number of frames
The number of frames in one cycle of the gait.

landing point, leaving point, and top point
The positions at which each leg reaches the ground, and leaves from it, and
the highest position. In landing point and leaving points, the hight does not
necessarily equal to be 0, which can changed arbitrarily.



Fig. 3. Marker AIBO

front height of body, back height of body
They determines the position and posture of the body.

power rate
The time ratio of each paw touches the floor.

phase difference
It specify the phase difference betwen the front left leg and the rear right
leg.

In our genetic algorithm, we set the size of populations to be 50. The mutation
probability is 10%. In the initial population, each gene has random values as the
parameters. For each gene, the robot moves actually and evaluates the fitness
score. Among 50 genes, the best 20 genes will be alive in the next generation,
and the rests are exchanged. The crossover operation is executed for these 20
genes, at any points. The fitness score is measured by the distance between the
starting point and the end point for a fixed period. By this system, we could
develop fast gaits automatically.

4 Localization

4.1 Self Location

Localization is an important task for automatic positioning, shooting and team
coordination. We use Monte Carlo localization technique for self localization. The
localization is based on the distances and directions of landmarks, e.g. poles and
goals, but it is applicable even if robots are in the situation that the landmarks
are invisible. Robots remembered the moving average of relative locations of
landmarks in the fixed period, which is one cycle of swinging their head. The
localization module has 1000 seeds.

4.2 Ball Location

Last year, our robots play soccer based on the location of the ball which is
observed directly. However, in soccer game, the position of the ball is fluctuating.



Moreover, the robot has narrow view so that it frequently lost the ball. It is
difficult for the robots to keep the correct position of the ball only based on
the direct observation. Therefore we are trying to develop a system to infer the
position of the ball even when it is invisible, based on Monte Carlo method.

The aim of this system is to estimate the position and velocity of the ball
as accurate as possible. Especially, the velocity is critical to infer the trace of
the ball which is out of view. It is impossible to estimate the velocity of the
ball. But we consider the velocity of the ball. The hypotheses which have wrong
velocity take low scores in the resampling phase. The procedure of the update
is as follows.

b := array of sample[1, ..., m]; : set of hypothesis
procedure ballmcl(observation,motion)
begin
if (observation 6= ε) then

b := updatebyobservation(b, observation);
if (motion 6= ε) then

b := updatebymotion(b, motion);
b := resampling(b);
bloc := decidelocation(a);
output bloc;

end;

5 Vision

In RoboCup, image processing is one of the most important tasks. In fact, our
robots consume most time for image processing. Our vision system consists of
three modules, CDTBox, Vision and DetectBall. CDTBox module detects
8 specific colors from the original 24-bit color image. Vision module recognizes
the landmark objects and DetectBall module recognizes the orange ball, from
the output of CDTBox.

Last year, we used 6 threshold values, y-max, y-min, u-max, u-min, v-max
and v-min, to specify each color. In another word, each color is expressed by an
axis-parallel rectangular region in YUV color space. However, it turned out that
the rectangular does not fit well to separate the colors accurately. The HSV color
space was more robust under the changing light conditions, but the conversion
from YUV to HSV in realtime was not a trival task. Therefore in this year, we
use 3 dimensional table in YUV space, where the colors are turned in HSV space.

6 Script Language and Simulator

The biggest change of our system in this year is innovation of scripting language.
Last year, we use C++ to describe our strategy. It causes high cost of debugging
and we had to compile to verify changes. This year, we embedded Lua [3, 5] in
our system to resolve these problems.



Lua Script

Mind

UDP

SensorCamera

TCP

Action Speaker

No Compile

Fig. 4. Embedding Lua Script

6.1 Lua

Lua is a scripting language designed to support embedding. A basic Lua engine,
including parser/compiler/interpreter but excluding standard libraries, weighs
in at under 100kb. Moreover, it is highly portable. Therefore, we could easily
embed Lua in the Jolly Pochie Framework.

The program which embedded Lua called host, and this host program can
invoke functions to execute a piece of Lua code, can write and read Lua variables,
and can register C/C++ functions to be called by Lua code.

Generally, we have to operate a virtual stack using API for connecting be-
tween script and C. However, in the Jolly Pochie Framework, we have used
Luabind library [4] to do it automatically.

6.2 Lua Simulator

Testing scripts needs robots, it requires a lot of trials and prevents speedy de-
velopment. Therefore, we developed a simulator which runs Lua scripts without
any change. The simulator enables us to develop strategies without robots. It
improves our development process drastically. Fig 5 shows that the difference be-
tween real machine and simulator: pseudo environment simulating environment
in the real world, pseudo active modules emulating avtive modules, pseudo pas-
sive modules emulating passive modules. But lua scripts is the same in both
environments.

Pseudo Environment A pseudo environment simulates the real environment,
including a soccer field, a ball and AIBOs, in a real world. In the simulator, we
can verify that the robot can watch the ball or not by represented these objects
as 3D models. It is implemented in VPython [6] which is a 3D graphics module
for python.



Environment

Real machine

Active modules

Lua Scripts

Passive modules

control program

Pseudo Environment

Simulator

Pseudo Active modules

Lua Scripts

Pseudo Passive modules

emulation 

emulation 

same
scripts 

simulation 

Fig. 5. real machine and simulator

Pseudo Active Modules Pseudo active modules emulate the modules in the
Jolly Pochie Framework. These modules call functions in scripts at either regular
intervals or an event happens. Specifically, the pseudo active modules consist of
a mind module, action module, UDP communication module, and so on.

Pseudo Passive Modules Pseudo passive modules emulate passive modules
outside of the Jolly Pochie Framework. Functions in these modules are called
by functions in scripts. For example, pseudo passive modules are modules which
make the robot walk or shoot, and calculate a position of a ball for the image
prcessing. In the simulator, we only define dummy functions on Lua side, because
it doesn’t need a self localization and an object recognition.

7 Concluding Remarks

We have explained the current status of our development. This year, we im-
proved many things in our system. Especially, embedded scripting language has
a large increase in speed of our development, and genetic algorithm found good
parameters for various gaits. As other team always do, we are continuing the
development and improving day by day. Therefore it is quite natural that our
programs will be changed drastically.



Fig. 6. Lua simulator

References

1. JollyPochie —team for robocup soccer 4-legged robot league—. <http:://www.i.

kyushu-u.ac.jp/JollyPochie/>.
2. AIBO SDE Homepage. http://openr.aibo.com/openr/jpn/index.php4.
3. Roberto Lerusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes

Filho. Lua—an extensible extension language. Software—Practice & Experience,
26(6):635–652, June 1996. Johon Wiley & Sons, Inc.

4. Luabind. http://luabind.sourceforge.net/.
5. The Programming Language Lua. http://www.lua.org/.
6. VPython. http://vpython.org/.


