
POI Atmosphere Categorization
Using Web Search Session Behavior

Kota Tsubouchi∗
Yahoo Japan Corporation

Tokyo, Japan
ktsubouc@yahoo-corp.jp

Hayato Kobayashi∗
Yahoo Japan Corporation

Tokyo, Japan
hakobaya@yahoo-corp.jp

Toru Shimizu∗
Yahoo Japan Corporation

Tokyo, Japan
toshimiz@yahoo-corp.jp

ABSTRACT
Point Of Interest (POI) categorization is to group POIs into several
categories and make them easy-to-use in geospatial applications.
Previous studies mainly used geospatial features, such as check-
in sequences and satellite images, to group POIs into pre-defined
rough categories. However, each POI has its own “atmosphere” be-
yond its geospatial features, which represents what kinds of people
tend to visit it and how they spend their time there. This subtle
atmosphere is important for users to decide whether to visit the
POI, so considering it may be critical when providing commercial
services, such as a property search service. In this paper, we pro-
pose a new POI categorization method that can capture the POI
atmosphere by using user behavior on a web search engine. Our key
observation is that the next queries of a search query about a POI
tend to contain the user’s purpose for visiting it. We harness this
observation to train a neural encoder that maps POIs to continuous
vectors (called embeddings) via next-query prediction with a deep
structured semantic model (DSSM). Experimental results indicate
that our method performs well for POI atmosphere categorization
of parks as a case study. We believe that our method complements
the existing POI categorization methods.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Webmin-
ing; •Computingmethodologies→ Learning latent represen-
tations.

KEYWORDS
POI Representations, Atmosphere Categorization, Geographic Knowl-
edge Discovery, Web Search Session Behavior

1 INTRODUCTION
Imagine that there are two parks almost the same size in a res-
idential area. One park has a lot of benches and cigarette butts
strewn about, and many office workers gather there at lunch time.
The other park has table-tennis tables on the lawns. Elderly peo-
ple and homemakers play table tennis at lunch time, and children
also play there after school. These two parks clearly have different
atmospheres (i.e., “business-like” versus “family-like”), but they
will be categorized into the same category (i.e., “parks located in
a residential area”) by existing POI (point of interest) categoriza-
tion methods, which group POIs into pre-defined rough categories
with geospatial features such as check-in sequences and satellite
images. This problem is critical for commercial services such as
property-search services, as shown in Figure 1. This figure shows a
∗These authors contributed equally.

Figure 1: Example of a property search service, as an appli-
cation of POI categorization.

possible scenario where a user is searching for a property near a
park because they want to frequently play with their children there.
In this scenario, if park B has a “business” atmosphere, and park
A is the nearest park with the “family” atmosphere, this result is
completely misleading for such a user, since the property is actually
far from the intended “park.”

In this paper, we address POI categorization that can distinguish
the above-mentioned atmospheres. Our approach to capturing the
POI atmosphere is to leverage user behavior on a web search en-
gine to train a neural encoder that maps POIs to continuous vectors
(called embeddings), which will be used for POI categorization.
Nowadays, people tend to get information from a search engine
no matter what they do, and POIs are no exception. For example,
if a user wants to go to a park for the purpose of playing with
their children on a playground equipment, they will post a series of
queries (called search session) such as “[PARK NAME] playground
equipment” to learn the details of the equipment and “playground
equipment safety” to confirm the basic safety of the equipment, as
well as “[PARK NAME]” to obtain overall information about the
park. Such search sessions on a POI must contain enough informa-
tion to represent the POI atmosphere, because most people have
prior knowledge of the POI and only post its relevant queries.

We use a deep structured semantic model (DSSM) [11] to train
the neural encoder with the search session behavior. DSSM is a
variant of the latent semantic model based on deep neural networks,
which was originally proposed in the information retrieval field and
has been practically used in commercial search engines to obtain
relevant documents given a search query. The core idea of DSSM
is to train an encoder that maps both queries and documents into
a semantic (embedding) space so that each query is close to its
relevant documents. This training is conducted in a supervised
fashion with many pairs of a query and its relevant document.
Although we do not have any explicit supervised information for
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our task, we solve this problem by regarding the search session
behavior as implicit supervised information under the assumption
that the next query of a query about a POI tends to represent the
POI atmosphere. In other words, we regard the next queries as
the relevant documents and train the encoder of DSSM with a lot
of pairs of a query and its next query. This approach is expected
to perform better than using a skip-gram model, which is often
used in the existing POI embedding methods such as POI2vec [2],
since DSSM is more expressive than the skip-gram model, and its
usefulness has been confirmed in the information retrieval field.
Furthermore, DSSM can basically handle any queries if we use a
character-based encoder, whereas the skip-gram model can only
handle words (or sequences of words) in a pre-defined dictionary.

Our approach is a new one compared to the ones taken by previ-
ous studies on POI categorization or representation. In particular,
the previous studies represented POIs in mainly two ways. One way
uses user behavior in a geographical space [2, 25] (e.g., sequence
of POIs a user visited), while the other uses geospatial features
of a POI [6, 18, 23] (e.g., a satellite image of the POI). These two
approaches will not be enough for our task since their resources
do not directly contain information indicating the atmosphere of
the POI such as “why users visit there,” although they are useful
for ordinary POI categorization. Considering atmosphere of the
POI is critical for commercial services, as mentioned above, so our
study will help put the findings of the previous studies into prac-
tical use since POI embeddings obtained by our approach can be
easily used with the existing ones. There have been few studies
purely based on linguistic resources similar to ours, because it has
been considered that ordinary word embeddings lack the ability
to capture geographic features of POIs, as pointed by Yan et al.
[23]. We show empirical evidence that search session behavior can
also capture several geographic features of POIs, such as area and
functionality, so our study will be important as a bridge between
two different fields: geographic information processing and natural
language processing.

The contributions of this paper are summarized as follows:

• We propose a new POI categorization method that can rep-
resent atmosphere of a POI beyond its geospatial features
with utilizing user behavior on a web search engine. Our
method uses next-query prediction in the DSSM framework
to train a neural encoder that maps POIs into real-valued
embeddings.

• We demonstrate the effectiveness of our method through
a case study on POI atmosphere categorization of parks.
The experimental results show that our POI embeddings
correspond to the real world and are better than ordinary
word embeddings (by word2vec) in terms of separability.

The rest of this paper is organized as follows. In Section 2, we
explain how to prepare the dataset based on search session behavior
and how to train the neural encoder based on DSSM. In Section 3,
we describe the case study on POI categorization of parks to confirm
the effectiveness of our method. In Section 4, we describe the related
work in POI embedding and query classification technologies. In
Section 5, we conclude with a summary of the key points.

2 PROPOSED METHOD
2.1 System Overview
Figure 2 shows an overview of our POI atmosphere categorization
system, which consists of two parts: training and inference. The
training part makes a query encoder that maps search queries to
embeddings in Euclidean space, where the queries may include POI
names. The query encoder is based on a recurrent neural network
and trained by next query prediction in a deep structured semantic
model (DSSM) framework [11].Wewill explain the data preparation
for training in Section 2.2 and give an overview of DSSM training
in Section 2.3.

In the inference part, we simply use the query encoder trained
in the training part in order to obtain POI embeddings.1 We only
need names (e.g., “New York”) since the search engine log basically
covers common POI names that can be used for commercial services.
Conversely, if a POI name is not used in a general search engine,
it will not be used in other specific services. We demonstrate the
power of our encoder by addressing POI categorization of parks as
a case study in Section 3.

2.2 Data Preparation
Table 1 shows examples of search queries about parks in Japan,
sampled from our search engine service, Yahoo! JAPAN. Each block
separated by double lines shows consecutive queries (called a search
session) about a park, which were posted by a single user in a short
period. Our key observation is that we can guess the atmosphere of
each park from the next queries without any prior knowledge of the
park. For example, we can guess that Yoyogi Park and Shiroyama
Park in sessions 1 and 2 may have a family atmosphere. Similarly,
we can guess that the parks in sessions 3 and 4 have a river where we
can play, and those in sessions 5 and 6 have some scenic places. This
observation allows us to think up an idea of training a query encoder
so that the next query can be well predicted from the embedding
of a query. Below, we describe how to prepare the dataset for this
training based on next query prediction.

First, we extract search sessions, each of which consists of con-
secutive queries posted in the same context, from users’ search
query histories. The purpose of this extraction is to reduce the
noise of predicting the next query that is not relevant to the current
one. We assume that queries posted in a short time period have the
same context and define a search session as follows.

Definition 2.1 (Search Session). A search session is defined as a
consecutive subsequence by splitting the query history of a single
user when the difference in posting time between adjacent queries is
longer than a given interval 𝛿 . Formally, let 𝐻 = (𝑄1, 𝑄2, . . . , 𝑄 |𝐻 |)
be the query history in chronological order. A consecutive subse-
quence (𝑄𝐼 , . . . , 𝑄 𝐽 ) of the history 𝐻 is called a search session if
and only if the following conditions hold:

𝑡 (𝑄𝑖+1) − 𝑡 (𝑄𝑖 ) ≤ 𝛿, (𝐼 ≤ 𝑖 < 𝐽 ), (1)
𝑡 (𝑄𝐼 ) − 𝑡 (𝑄𝐼−1) > 𝛿, (2)
𝑡 (𝑄 𝐽 +1) − 𝑡 (𝑄 𝐽 ) > 𝛿, (3)

1We provide our system as a relatively standard API for several services, where the
input is a park name, and the output is the corresponding embedding.
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Figure 2: Overview of POI atmosphere categorization system.

Table 1: Examples of search sessions, where each block separated by double lines represents a session, and each row represents
a query.

Session Original Query English Translation
1 代々木公園 Yoyogi Park
1 代々木公園 ランチ Yoyogi Park, lunch
1 代々木公園 ランチ 子連れ Yoyogi Park, lunch, with children
2 城山公園 Shiroyama Park
2 城山公園 子供 Shiroyama Park, children
2 メルヘン館 鹿児島 Fairy Tale Museum, Kagoshima (prefecture)
3 城南島海浜公園 Jonanjima Kaihin Park
3 城南島海浜公園 釣り Jonanjima Kaihin Park, fishing
4 くじら運動公園 Kujira Undou Park
4 くじら運動公園 川遊び Kujira Undou Park, swimming in river
4 くじら運動公園 バーベキュー Kujira Undou Park, barbecue
5 光が丘公園 Hikarigaoka Park
5 東京 紅葉スポット Tokyo, autumn leaves spots
6 豊洲ぐるり公園 Toyosu Gururi Park
6 豊洲ぐるり公園 夜景 Toyosu Gururi Park, night view

where 𝑡 (𝑄) represents the posting time of a query𝑄 , setting 𝑡 (𝑄0) =
−∞ and 𝑡 (𝑄 |𝐻 |+1) = ∞.

We manually set the interval 𝛿 to two minutes through a pre-
liminary experiment.2 We discarded search sessions with only one
query since we need the next query for training. For each search
session, we kept up to ten queries from the beginning and discarded
the rest to avoid unfavorable context drift and computational cost.
Finally, we extracted all pairs of adjacent queries from the filtered
search sessions. We did not use non-adjacent pairs since the num-
ber of such pairs is quadratic to the session length, and adjacent
pairs can implicitly consider non-adjacent pairs. More specifically,
given a search session (𝑄1, 𝑄2, 𝑄3), if the prediction of 𝑄3 by 𝑄2
is correct, it is also informative for the prediction of 𝑄2 by 𝑄1. We
divided them into three sets, training, validation, and test sets, as
shown in Table 2 and collectively constructed a dataset, called the
query pair dataset. The average length of queries in the dataset was

2We manually checked whether each query pair is in the same context and confirmed
that the accuracy was about 95% for 100 random pairs.

Table 2: Details of query pair dataset.

Training Validation Test
# of query pairs 299,923,615 16,629 33,375

9.14 Japanese characters, the average number of terms (i.e., chunks
of characters delimited by white spaces) in each query was 1.74,
and the number of unique characters was 26,383.

2.3 DSSM Training
Figure 3 shows the overview of DSSM training. It exemplifies a
training procedure for predicting the true next query “Cherry blos-
soms” given a query “Sumida Park”, assuming that we have a search
session (..., “Sumida Park”, “Cherry blossoms”, ...). Let𝑄 and𝑄 ′

0 be
the input query and the true next query, which correspond to a
pair (i.e., (𝑄,𝑄 ′

0)) in the query pair dataset. Our goal is to obtain
a query encoder 𝑓 : Q → R𝑛 that maps a query 𝑄 ∈ Q to an
embedding or 𝑛-dimensional continuous vector on R𝑛 . We use a
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Figure 3: Overview of DSSM training for next query prediction. The left list shows an input query 𝑄 and the next query
candidates {𝑄 ′

𝑘
}, where 𝑄 ′

0 is a positive example (true next query), and the others 𝑄 ′
𝑘
(𝑘 > 0) are randomly sampled pseudo

negative examples. The right plot shows the embedding space created by the query encoder 𝑓 . The training is conducted with
a categorical cross entropy loss ℓ (𝑄,𝑄 ′

0) based on similarity scores 𝑅(𝑄,𝑄 ′
𝑘
) from the input query 𝑄 . Overall, this training can

adjust the query encoder 𝑓 so that the input query 𝑄 is close to the next query 𝑄 ′
0 and far from random queries 𝑄 ′

𝑘
(𝑘 > 0).

recurrent neural network-based encoder as the query encoder, so 𝑓
returns the linear transformation of the last hidden state calculated
in a recurrent manner. Since this procedure is not essential in our
study, we will omit the details.

The next query prediction task is a kind of multi-class classi-
fication with randomly sampled pseudo negative examples. Let
{𝑄 ′
𝑘
}1≤𝑘≤𝐾 be the pseudo negative examples, where 𝐾 is the num-

ber of negative examples. Formally, the task is to correctly select the
true next query 𝑄 ′

0 from candidate queries {𝑄 ′
𝑘
}0≤𝑘≤𝐾 (including

𝑄 ′
0) given a query 𝑄 . The difference from the ordinary multi-class

classification with predefined class labels is that the number of class
labels is extremely large, since we need to consider all available
queries (basically, more than tens of millions). In the DSSM frame-
work, we can solve this problem by encoding class labels (candidate
queries) as well as the input query, in addition to sampling nega-
tive examples as mentioned above. More specifically, we define a
similarity score 𝑅(𝑄,𝑄 ′) between two queries, 𝑄 and 𝑄 ′, on the
embedding space and calculate the probability 𝑝 (𝑄 ′

0 |𝑄) of the true
next query based on the scores of the candidate queries for the
input query.

In this paper, we define 𝑝 (𝑄 ′
0 |𝑄) as a softmax probability and

𝑅(𝑄,𝑄 ′) as a cosine similarity, as follows.

𝑝 (𝑄 ′
0 |𝑄) =

exp(𝛽𝑅(𝑄,𝑄 ′
0))∑𝐾

𝑘=0 exp(𝛽𝑅(𝑄,𝑄
′
𝑘
))
, (4)

𝑅(𝑄,𝑄 ′) = 𝑓 (𝑄)T 𝑓 (𝑄 ′)
| |𝑓 (𝑄) | | | |𝑓 (𝑄 ′) | | , (5)

where 𝛽 is a hyperparamter (i.e., the inverse temperature coefficient)
to shape the probability distribution. Note that Figure 3 represents
a simple case of 𝛽 = 1. Using the true label probability 𝑝 (𝑄 ′

0 |𝑄), we
can train the query encoder in a similar fashion as ordinary multi-
class classification. Let ℓ (𝑄,𝑄 ′

0) be the categorical cross entropy
loss, as follows.

ℓ (𝑄,𝑄 ′
0) = − log 𝑝 (𝑄 ′

0 |𝑄). (6)

Note that𝑄 ′
0 is always the true label. Finally, we have the following

total loss for the query pair data including 𝑖-th pair (𝑄 (𝑖) , 𝑄 ′(𝑖)
0 ):

𝐿Θ =
∑
𝑖

ℓ (𝑄 (𝑖) , 𝑄 ′(𝑖)
0 ), (7)

where Θ represents the learning parameters in the query encoder.
We can minimize 𝐿Θ by using a (stochastic) gradient descent op-
timizer and obtain a query encoder 𝑓 that maps a query 𝑄 to an
embedding so that 𝑄 is close to the next query 𝑄 ′

0 and far from
the other random queries 𝑄 ′

𝑘
(𝑘 > 0) on the embedding space, as

shown in Figure 3.

Implementation Note. We used a language modeling loss along with
the above-mentioned DSSM loss to stabilize the training procedure
in the experiments. Note that we chose character-based language
modeling (next character prediction) rather than word-based one,
following the report [17] that character-based one is a better choice
for Japanese texts, especially when processing rare words. Let 𝑄
be a sequence of Japanese characters, i.e., 𝑄 = (𝑐1, . . . , 𝑐 |𝑄 |). The
language modeling loss is defined as the standard negative log
likelihood, as follows.

𝐿LM
ΘLM =

∑
𝑖

ℓLM (𝑄 (𝑖) ), (8)

ℓLM (𝑄) = −
|𝑄 |∑
𝑡=1

log𝑝 (𝑐𝑡 | 𝑐1, . . . , 𝑐𝑡−1) . (9)

The whole training proceeds by alternately optimizing the DSSM
loss and the language modeling loss.

3 EXPERIMENTS
We experimented with POI categorization of parks as a case study
in order to confirm the effectiveness of our method, especially for
POI atmosphere. Here, we explain the experimental settings in Sec-
tion 3.1 and demonstrate the characteristics of the query encoder
itself for general queries in Section 3.2. We conducted three exper-
iments focusing on parks in the Tokyo metropolitan area, since
we can use the detailed categories that were manually created by
the government as (pseudo) correct answers. In Section 3.3, we de-
scribe the experiments on categorization of parks and other POIs to
confirm the performance in the case of general POIs. In Section 3.4,
we describe the experiments on atmosphere categorization of parks
with the detailed categories to show the ability of our method to
distinguish POI atmospheres. In Section 3.5, we observed park atmo-
sphere in more detail and discovered several connections between
the obtained POI atmosphere and the real world.



POI Atmosphere Categorization
Using Web Search Session Behavior

Figure 4: Model settings of query encoder based on LSTMs.

3.1 Experimental Settings
3.1.1 Model Structure. The model structure of our query encoder
was a three-layer LSTM stacked on an embedding layer, as shown
in Figure 4. We used the LSTM formulation by Graves [3]. The
embedding layer receives an input token representing a character
in the vocabulary of 6000 characters and gives a corresponding
256-dimensional vector, and this vector is fed to each recurrent
layer. The sizes of the recurrent layers are all set to 1024, and the
hidden and cell state vectors of an LSTM layer are always initialized
with zeros. The model has an additional fully connected layer and
produces the 128-dimensional vector for the next query prediction.
The total number of parameters was 29M.

3.1.2 Training. We used the Adam [7] optimizer with hyperpa-
rameters (𝛼 = 0.0001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8), along with
the gradient clipping with threshold 0.1, for training the query
encoder. The inverse temperature coefficient 𝛽 was set to 10, and
the number 𝐾 of negative examples was 4, meaning the task was
to select the true next query from 5 candidates. The batch size for
next-query prediction was 96, and that for language modeling was
512. Note that we used 480M single queries in the query pair dataset
for language modeling. The maximum number of iterations was
5M, where each iteration consumed two batches for both tasks.
The training took about 50 days with one GPU (Tesla V100). All
the hyperparameters were determined through several preliminary
experiments.

3.1.3 Baseline: Skip-gram Model. We chose the skip-gram model
(also known as the word2vec’s model [10]) as a baseline, as it has
been often used in POI embedding methods such as POI2vec. This
model has a log-bilinear structure and is trained with word se-
quences assuming the distributional hypothesis in linguistics that
the meaning of a word can be represented by its surrounding words.
After the training, we obtained a fixed mapping from the words in
the pre-defined dictionary to embeddings.

We used the implementation in the gensim tool [15] and trained
the skip-gram model with all the search sessions containing 480M
queries, as word sequences. The hyperparameters were as follows:
the embedding size was 128, the window size was 5, the minimum
count was 1, the number of training epochs was 10, and the others
were left at their defaults. There were no unknown POI names in
our experiments; that is, all the POI names were included in the

Table 3: Detailed information about nine parks, where each
park has its type, area (m2), and the principle component
scores (𝑥,𝑦) in Figure 7a.

Id Park Name Type Area 𝑥 𝑦

𝛼 Komaba Nei. 40,396 0.089 0.271
𝛽 Jingudoori Nei. 3,128 -0.473 0.057
𝛾 Minami Ikebukuro Urb. 7,818 -0.047 -0.109
𝛿 Futako Tamagawa Dis. 63,000 0.420 -0.191
𝜖 Denen Chofu Seseragi Spo. 30,300 0.218 0.102
𝜁 Setagaya Dis. 78,957 0.158 0.002
𝜂 Senzoku Ike Gen. 40,000 0.076 0.386
𝜃 Utsukushi Ga Oka Nei. 21,832 0.263 0.351
𝜄 Aobadai Nei. 38,000 0.173 0.240

search sessions. Note that we also tried pretrained embeddings
trained with Wikipedia data,3 but we did not use them since their
predifined dictionary had only 6.39% of the parks used in Section 3.4.

3.2 Characteristics of Query Encoder
We calculated cosine similarities for several POI-related queries to
demonstrate characteristics of the query encoder. In summary, the
similarity was reasonably high when two POIs belonged to the same
category and low otherwise. For instance, the similarity between
two urban areas “Shinjuku” and “Yokohama” was high (score: 0.70),
while that for “Shinjuku” and a relatively rural area “Hachinohe”
was relatively low (score: 0.52). “Hachinohe” was dissimilar to the
spa resort “Atami” (score: 0.38), but “Atami” was very similar to
another spa resort “Yufuin” (score: 0.77). Note that here we use
English translations of Japanese queries and POI names only to
explain the experiments.

One might think that character-based encoding will make mis-
takes when two words look similar but have completely different
meanings. One such case is a mountain name “富士山(Mt. Fuji)”
and a company name “富士通(Fujitsu),” which share two Japanese
characters representing “Fuji,” making them look similar. However,
their similarity was significantly low (score: 0.25), which implies
that the next queries of those two words are naturally different.
Conversely, there is also a case where two words look different but
have almost the same meaning. For example, the similarity of a park
“美しが丘公園(Utsukushi Ga Oka Park)” and possibly the same but
misspelled one “美しくしがおかこうえん(Utsukushi Kushi Ga
Oka Park)” was interestingly high (score: 0.79). This demonstrates a
positive effect of our character-based encoding in that our encoder
can flexibly handle users’ misspellings in real applications.

3.3 Categorization of Parks and other POIs
We experimented on categorization of parks, buildings, and streets
with many restaurants (restaurant streets) in the Tokyo metropol-
itan area to confirm the performance of our encoder for general
POIs. We prepared the nine parks shown in Table 3 (𝛼, . . . , 𝜄), six
buildings (1: Shibuya Cast, 2: Roppongi Hills, 3: Tokyo Midtown,
4: Ginza Six, 5: Shibuya Hikarie, and 6: Hibiya Midtown), and two
restaurant streets (A: Golden Street, B: Corridor Street). We ob-
tained the embeddings of all the POIs by using our method and the

3http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/

http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/
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(a) Proposed method. (b) Skip-gram.

Figure 5: Two-dimensional PCA-based visualizations for embeddings of parks, buildings, and restaurant streets created by our
method (a) and the baseline (b).

baseline and visualized them with principle component analysis
(PCA).

Figure 5 shows the two-dimensional PCA-based visualizations;
figures (a) and (b) are those for our method and the baselines, respec-
tively. According to the results, our method convincingly grouped
the POIs into three categories (i.e., circles of “Park,” squares of
“Building,” and diamonds of “Restaurant street”), whereas the base-
line could not form recognizable groups. Although the building
of “5: Shibuya Hikarie” is unexpectedly closer to the “ Restaurant
street" group than the “Building” group, this result is actually intu-
itive because the Hikarie building has a very large restaurant area
inside, and people frequently use it for lunch and dinner. Of course,
the other five buildings also have restaurants, but these buildings
have many company offices and are mainly utilized for business
purposes.

3.4 Atmosphere Categorization of Parks
We experimented on atmosphere categorization focusing on parks
to show the ability of ourmethod to distinguish POI atmosphere.We
prepared 532 parks, which were the ones remaining after filtering
out very small parks (such as block parks) from all the 3031 parks in
the Tokyo metropolitan area. As (pseudo) correct answers for POI
atmosphere, we chose the classification scheme of parks established
by the government, where each park is given one of the detailed
types depending on its location, area, and purpose. Since they are
manually annotated considering the purpose of use, they were
expected to reflect POI atmosphere information such as “why users
visit there.” The major types (major categories of the detailed types)
are as follows.

• Type 1: Parks that are usually in the suburbs and utilized for
sports activities and recreation.

• Type 2: Green belts in urban spaces for improving the cityscape.
• Type 3: Greenways and forests for improving the safety and
comfort of city life.

We conducted qualitative and quantitative comparisons between
our method and the baseline in terms of these major types.

3.4.1 Qualitative Comparison. Figure 6 shows two-dimensional vi-
sualizations of the embeddings produced by our method (a) and the
baseline (b). Here, we used t-SNE (t-distributed stochastic neighbor
embedding) [19] for the visualization since it was difficult to extract

principle components by PCA in this complicated case. t-SNE is a
dimensionality reduction method via a non-linear projection based
on the Student t-distribution and commonly used for visualizing
word embeddings since it has the ability to preserve local structure;
roughly speaking, points that are close to each other in the original
space are also close in a low-dimensional space.4

Looking at figure (a), we can see that our method clearly sepa-
rated Type 1 (circles) and Type 3 (diamonds). This result is intuitive
since Types 1 and 3 correspond to the artificial and natural atmo-
spheres, respectively. As for Type 2 (squares), the corresponding
parks seem scattered at first glance, but they are actually closer
to or surrounding Type 3 and even separated from Type 1, with
some exceptions. Note that only local similarities are meaningful
in t-SNE, so the result does not mean that the concept of Type 2
surrounds or includes that of Type 3. This result also reflects Type
2’s modest natural atmosphere well. On the other hand, figure (b)
shows that the baseline could not obtain any meaningful result.
Overall, we confirmed that our method outperformed the baseline
in terms of POI atmosphere categorization.

3.4.2 Quantitative Comparison. We conducted quantitative com-
parison of our method and the baseline in terms of separability. We
set the separability measure as the average accuracy of 10 runs of
a simple classifier since we have the correct answers in this task,
although there are various unsupervised separability definitions.
We prepared𝑛-layer classifiers with𝑛 fully connected layers for this
evaluation. Given the 128-dimensional embedding of each park, the
𝑛-layer classifier returns the softmax probability of each type for
the park after processing with the 𝑛 layers. We trained the model
with the standard cross entropy loss with the 532 parks with their
types, where the optimizer was stochastic gradient descent with
the learning rate 𝛼 = 1.

Table 4 shows the separability results of our method and the
baseline via one-layer and two-layer classifiers. The one-layer clas-
sifier has only one linear transformation and heavily depends on
the expressiveness of the embeddings, while the two-layer classifier
is relatively robust to the input. The results show that the separa-
bility of our method was clearly higher than that of the baseline,
which quantitatively shows the superiority of our method. Since

4Note that the axes 𝑥 and 𝑦 shown here are automatically created by t-SNE, and it is
difficult to determine what they mean.
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Table 4: Separability and its standard deviation of our
method and the baselines via one-layer and two-layer clas-
sifiers.

One-layer Two-layer
Proposed method 0.929 ± 0.002 0.962 ± 0.003
Skip-gram 0.822 ± 0.000 0.861 ± 0.008

there were no big differences between the results of the one-layer
and two-layer classifiers, we conjecture that similar results will be
obtained with other classifiers.

3.5 Connecting Park Atmosphere to the Real
World

Finally, we took a closer look at the nine parks in Section 3.3 to find
connections between the obtained POI embeddings (or atmosphere)
and the real world. Table 3 includes detailed information on the
nine parks, where each park has its detailed type and area. We
created the following three categories by grouping similar types to
simplify this analysis.

• District: District parks (Dis.) are designed to improve the
living environment of local residents.

• Sports and general: Sports parks (Spo.) and general parks
(Gen.) provide a variety of recreational facilities that supple-
ment the park’s main purpose.

• Neighboring and urban: Neighborhood parks (Nei.) and ur-
ban parks (Urb.) mean nearly the same thing; they are located
in a residential or urban area and are intended to be used
by neighboring residents. The area of a park of this type is
usually small.

Figure 7 shows the two-dimensional PCA-based visualizations
produced by our method and the baseline, where the size and color
of each point means the area and category of the corresponding
park, respectively. Note that we chose PCA in this analysis because
the number of parks was relatively small. We also put the principle
component scores (𝑥,𝑦) in Table 3. Looking at the results of our
method (a), we can guess what each axis represents. The first prin-
cipal component (𝑥-axis) separates very small “Neighboring and
urban” parks from the rest, and the second principal component
(𝑦-axis) seems to divide the rest into two groups; the upper one is
for medium-sized parks that are located near large-scale apartment
complexes, and the lower one is for large “District” parks to which
people come possibly from distant places by car or train. Although
area is not included in the park atmosphere, it is important that our
encoder expressed area-related features in the embeddings without
any prior knowledge of their areas, despite that it was trained only
with search queries.

Figure 8 shows the satellite images of the nine parks as supple-
mentary information. As the reader can see, each park has different
geographical features, which are much richer information than the
area feature in the previous paragraph. We qualitatively confirmed
whether ourmethod reflected such features and deeper atmospheres
by examining the official information on each park and associating
its image and PCA result. The three observations below are proof
that our method succeeded in capturing the geographical features
and atmosphere.

• The “𝛽 : Jingudori” park is located in a crowded business
district, and office workers often take breaks on its benches.
The public toilet in the small park is often used by neighbors
and passers-by. On the other hand, the other eight parks have
open spaces where people can play sports, so it is intuitive
that the Jingudori park was separated from the other parks.

• Only in the “𝜂: Senzoku Ike” and “𝜃 : Utsukushi Ga Oka” parks
can we enjoy fishing. Although these parks are defined as
different categories, they are utilized as the same purpose.
Indeed, 𝜂 and 𝜃 are located near each other in Figure 7a.

• The “𝛿 : Futako Tamagawa” park is separated from the other
parks and located opposite to “𝛽 : Jingudori” park in Figure 7a.
Most users of the Futako Tamagawa park are families with
children, since there are many playgrounds for children in
the park. As mentioned above, because the Jingudori park
is for business persons, these two parks are very different
from each other, which corresponds to the PCA results.

• The "𝛾 : Minami-Ikebukuro" park is located in a similar busi-
ness district and has a similar small area to the "𝛽 : Jingudori"
park, but the way users spend their time in each park is
completely different. This fact is well reflected in the visual-
ization, which means that even similar parks in geographical
features can be successfully distinguished by their “atmo-
spheres.”

It should be emphasized that our method leads to these observations
without using any geographical features, although some of them
could have been identified by analyzing the satellite images.

4 RELATEDWORK
We clarify the novelty of our work by explaining several related
studies in two fields: POI embedding and query classification. In
summary, our work is essentially different from them in that we
create POI embeddings from search queries and show their effective-
ness via a case study for industrial geospatial applications, whereas
previous studies on POI embedding and query classification were
basically conducted sorely using geospatial resources and search
queries, respectively.

4.1 POI Embedding
There have beenmany studies on POI embedding, which are roughly
divided into two groups; one group uses user behavior in a geo-
graphical space, and the other uses geospatial features of a POI. In
the first group with user behavior, typical studies used check-in
sequences on location-based social networks such as Foursquare to
train word2vec-like models. For example, Zhao et al. [25] proposed
Geo-Teaser, a variant of the skip-gram model with temporal states
(i.e., weekday and weekend), and Feng et al. [2] proposed POI2Vec,
a variant of continuous bag-of-words (CBOW) model [10] that in-
corporates the geographical influence of POIs, where people tend
to visit nearby locations. As a graph-based approach, Wang et al.
[20] proposed a variant of the DeepWalk model [12] trained with
shortest paths instead of randomly sampled paths to practically
learn embeddings of intersections on road networks. In the second
group with geospatial features, Jean et al. [6] and Spruyt [18] pro-
posed Tile2Vec and Loc2Vec, respectively, that map satellite images
to embeddings. Each method consisted of a convolutional neural
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(a) Proposed method. (b) Skip-gram.

Figure 6: Two-dimensional t-SNE-based visualizations for embeddings of parks with three major types by our method (a) and
the baseline (b).

(a) Proposed method. (b) Skip-gram.

Figure 7: Two-dimensional PCA visualizations for embeddings of nine parks produced by our method (a) and the baseline (b).
The size and color of each point represent the area and category of the corresponding park, respectively.

network-based encoder trained with a triplet loss, which minimizes
the distance between the embeddings of the anchor location and
the neighbor location while maximizing the distance between the
anchor and distant locations. Furthermore, there have been several
studies using resources with geotags, such as Place2Vec [23] trained
with geotagged Yelp venues andGPS2Vec [24]with geotagged Flickr
images, where Place2Vec used a distance-binned skip-gram model,
and GPS2Vec used a neural encoder that predicts softmax probabil-
ities of semantic features. All of these studies were confirmed to
be useful for their target tasks such as ordinary POI categorization,
but they will not be enough for our task since their resources do
not directly contain information indicating POI atmospheres such
as “why users visit there,” as explained in Section 1.

Several studies improved the quality of POI embeddings by us-
ing textual information. For example, Chang et al. [1] proposed
a hierarchical skip-gram model that can simultaneously consider
text content and check-in sequences on Instagram. Wei et al. [22]

proposed a graph-based method LeGo-CM that embeds texts, geo-
tags, and time stamps on Twitter into the same latent space. Their
findings are useful in that our embeddings will also improve other
geospatial models, but our purpose is essentially different from
theirs. As mentioned in Section 1, there have been few studies
purely based on linguistic resources. Quercini and Samet [13] used
the Wikipedia link structure to the relatedness of a concept to a
location, but they did not address learning embeddings. A study
of Konkol et al. [8] is the most related one, where they examined
if embeddings of city names are related to their locations in the
real world. However, since they used the skip-gram model with
Wikipedia for general POIs, their settings are completely different
from ours (DSSM with search queries for POI atmosphere). In ad-
dition, we confirmed that our DSSM model performed better than
the skip-gram model in Section 3.4.
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𝛼 : Komaba 𝛽 : Jingudori 𝛾 : Minami Ikebukuro

𝛿 : Futako Tamagawa 𝜖: Denen Chofu Seseragi 𝜁 : Setagaya

𝜂: Senzoku Ike 𝜃 : Utsukushi Ga Oka 𝜄: Aobadai

Figure 8: Satellite photos of the nine parks (image credit: ©Google Earth 2019).

4.2 Query Classification
Our work can be regarded as query classification in the natural
language processing or information retrieval fields, when consider-
ing a specific task that classifies only POI queries into predefined
categories, as in Section 3.4. Note that we used the term “categoriza-
tion” in this paper since our purpose is to group similar POIs either
explicitly or implicitly, rather than just classify them. There have
been many studies on query classification [4, 5, 9, 14, 16, 21], since
understanding the intents of users’ queries is essential to improving
the quality of a search engine from a practical standpoint. However,
there are no studies connecting embeddings based on search query
logs to geospatial features in the real world, like ours.

We explain previous studies on query classification in more de-
tail, which are roughly divided into three groups [26] with respect
to training features: query expression, retrieved content, and user
behavior. The first group based on query expression uses common
text features, such as the types, frequencies, and lengths of words
and characters in a query [5, 16]. An advantage of this informa-
tion is that we can develop a classification system at a low cost
by only considering query texts. The second group based on re-
trieved content involves anchor links, snippets, and display ads
as well as documents retrieved by a query [4, 9]. The third group
based on user behavior is often an enhanced version of the second

group, which includes user feedback for retrieved content, such as
the click-through rate, dwell time, and past action history [14, 21].
These rich features of the second and third groups can improve
classification performance, but it will be costly to conduct exper-
iments and develop systems. Our approach with search session
behavior belongs to both first and third groups, but we only use
the query encoder in inference time, whose input is a single query.
This means that the deployment cost is the same as that of the first
group, so our approach is promising for industrial applications.

5 CONCLUSION
We proposed a new POI categorization method that can represent
the atmosphere of a POI beyond its geospatial features. Our method
involves a neural query encoder that maps POIs to embeddings,
which was trained via next-query prediction within the DSSM
framework. Moreover, considering users’ search behavior helps us
to extract the context of users; thus, we could successfully repre-
sent POI atmospheres without any prior knowledge. We addressed
POI categorization of parks in a case study and demonstrated the
effectiveness of our method, especially for POI atmosphere in com-
parison with the widely used skip-gram models. Furthermore, we
discovered several connections between the obtained embeddings



Kota Tsubouchi, Hayato Kobayashi, and Toru Shimizu

(atmosphere) and the real world by referring to the official informa-
tion and satellite images of each park. These results indicate that
search queries are highly valuable for geographic information pro-
cessing, as well as natural language processing. We believe that our
method complements the existing methods based on geographic
features, such as check-in sequences and satellite images, and will
encourage their use in the real world. Our future work will include
checking if our method can distinguish atmospheres for POIs other
than parks. Our method is general enough to cover any POIs used
as queries in a search engine, so we expect that our method will
improve with various findings from other geographical resources.
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