
1

A Framework for Advanced Robot

Programming in the RoboCup Domain

� Using Plug-in System and Scripting Language �

Hayato Kobayashi a,1, Akira Ishino b, and Ayumi Shinohara c

aGraduate School of Information Science & Electrical Engineering, Kyushu University
bOf�ce for Information of University Evaluation, Kyushu University

cGraduate School of Information Science, Tohoku University

Abstract. RoboCup is a competition for autonomous robots playing soccer that

makes contributions to various Intelligent Autonomous Systems. In RoboCup,

frameworks to support robot programming are important because we have to re-

solve complex dif�culties by software, especially in the four-legged robot league,

where we can never resolve these dif�culties by hardware since only �xed hardware

is available.

This paper describes an extensible framework which is suitable for advanced

robot programming in the RoboCup domain. Our framework integrates a plug-in

system and the scripting language Lua, which we embed in the system.

In our framework, modules are freely replaced, without changing the bindings

for the scripting language. Therefore, in our framework, even programming begin-

ners can contribute to the development of huge, complex, robot programs without

dif�culty. Since many students who are not familiar with practical programming of-

ten join the team only a short time before the RoboCup competition, our framework

is a good choice.

Keywords. Framework, Plug-in System, Embedding Scripting Language, RoboCup

1. Introduction

RoboCup is a competition for autonomous robots which play soccer. Many researchers

in the �elds of Arti�cial Intelligence and Robotics attempt to make various Intelligent

Autonomous Systems for use in this competition. Moreover, RoboCup is also a very

interesting and challenging research domain, because it has a noisy, incomplete, real-

time, multi-agent environment.

RoboCup has �ve different leagues: simulation, small-size robot, middle-size robot,

four-legged robot, and humanoid league. We have participated in the four-legged robot

league since 2003, as team Jolly Pochie [1]. Our league has its own speci�c dif�culties,

such as a camera with a narrow �eld of vision, quadrupedal locomotion, and limited re-

sources. Since the hardware is �xed in an AIBO, which is an entertainment robot de-

signed by Sony, without any alterations, we have to resolve the dif�culties only by soft-

1Correspondence to: Hayato Kobayashi, E-mail: h-koba@i.kyushu-u.ac.jp.



2 H. Kobayashi et al. /

ware. From a software standpoint, a robot program for the four-legged robot league may

be more complex than that for the other leagues.

In RoboCup, especially the four-legged robot league, researchers must create com-

plex robot programs for playing soccer. This is often a burden for researchers whose re-

search topics are not closely related. Therefore, as with usual software engineering, many

methods for reducing this burden are proposed in RoboCup [2,3,4,5,6]. We de�ne overall

systems which use these methods, or which make it easier to create robot programs from

various perspectives, as frameworks. Other analogous frameworks are discussed in the

next section.

In this paper, we describe our framework developed for the RoboCup competition.

Our framework integrates a plug-in system and the scripting language Lua [7], which we

embed in the system. Thanks to the excellent mechanisms supplied by Luabind [8], it

becomes quite easy to bind C++ modules in this system. Thus, our framework enables

us to create many modules easily and quickly without the dif�culties associated with the

bindings. As a matter of course, scripts in our framework can always access the methods

of the modules. Therefore, we can develop each low-level module separately and inde-

pendently, while other teammates are writing and adjusting high-level strategic scripts.

This is quite advantageous to the development for the RoboCup competition, because

even a new member of the team, who is neither familiar with practical C++ program-

ming nor understands the whole complicated system developed so far, can contribute to

adjustments of the parameters, examination of another strategy, and so on. Through these

experiences, she/he will understand the whole system gradually and be prepared to join

the development of the core parts later.

The rest of this paper is organized as follows. In section 2, we discuss related work.

In section 3, we illustrate the overview of our framework. In section 4, we describe

the details of the plug-in system, and in section 5, we describe a way to embed the

scripting language Lua. In section 6, we explain the speci�cation of our robot scripts in

our framework. Finally, section 7 presents our conclusions and future work.

2. Related Work

There have been several studies done on frameworks and elemental techniques. The

work in [2,3,5,6] shows multiplatform systems, which are also easy to program sepa-

rately by using modular architecture. The work in [6] also used the concept of a �plug-

in�. The work in [4,9] shows frameworks where programmers can easily describe high-

level processes. The work in [10,11,12] shows techniques to embed scripting languages

whereby programmers can intuitively describe high-level processes. The work in [13,14]

shows frameworks where programmers can generally describe low-level processes with

a scripting language.

With respect to these related works, our framework has a very �exible and extensi-

ble architecture. Our framework integrates two techniques, that of a plug-in system and

embedding a scripting language, without any disadvantages. There have been no studies

that have tried to use these two techniques. Using our framework, all programmers from

beginners to experts can collaboratively work toward one goal, which is simply to create

the soccer robot programs.



H. Kobayashi et al. / 3

JPMindModule JPCameraModule JPActionModule JPSensorModule JPUDPModule JPTCPModule

OPEN-R

Core Program

Base Program

MindModule CameraModule ActionModule SensorModule1 SensorModule2

Lua Script

Concrete Modules

Abstract Modules

The occured events is allotted to the modules.

Scripts can already access the available methods of the modules.

We can plug the modules that we want to use into the base program.

Figure 1. The overview of our framework.

3. Overview of Our Framework

Our framework is mainly based on two techniques. One is the plug-in system, and the

other is embedding a scripting language. The plug-in system helps the development by

allowing several programmers to collaborate. We can simplify each task by splitting a

huge, complex process into individual functions. Embedding a scripting language helps

us eliminate the trial and error process and the time it demanded. By making high-level

scripts that do not need to recompile, our tasks can progress more ef�ciently.

Figure 1 shows some features of our framework. This is the programming procedure

in our framework. We �rst separately create each low-level module. Then, we select

some modules that we want to use, and plug the selected modules into the base program.

For example, we would select a vision module, a localization module, a motion module,

and so on, to make a robot that plays soccer. The robot program is generated easily by

an automation tool for this procedure. We can build a binary program by compiling this

robot program. Finally, we can write scripts for performing high-level processes by using

the methods de�ned in the modules. In order to replace certain modules with others, once

again, we only need to select modules, generate a program, and compile it. Nevertheless,

we need not rewrite the script.



4 H. Kobayashi et al. /

Table 1. The speci�cations of special functions.

Module Special Function When is the function called?

JPCameraModule cameraNotify() Every 40 ms in sync with the CCD-camera

JPMindModule mindNotify() The same as cameraNotify()

JPActionModule actionNotify() When a set of joint angles are achieved

JPSensorModule sensorNotify() When sensor data is detected

JPUDPModule udpNotify() When UDP data is received

JPTCPModule tcpNotify() When TCP data is received

4. Plug-in System

The concept of a �plug-in� has often been used in recent applications (e.g. in web

browsers, drawing software, and integrated development environments). In RoboCup,

Kleiner [6] introduced this concept. Our plug-in system is also similar to other exist-

ing plug-in systems. However, we must use OPEN-R SDK, which is the complicated

programming interface that Sony is promoting for the creation of robot programs us-

ing AIBO. Therefore, we completely hide OPEN-R functions, data structures, and event

handling in our framework. Consequently, we can avoid direct access to OPEN-R SDK

in each module. Moreover, unit-test programs can be easily associated, even without ac-

cess to OPEN-R SDK. Programmers can create modules with our user-friendly libraries,

needing only an understanding of the simple rules used in our plug-in system.

As shown in Figure 1, our plug-in system consists of a base program and individual

modules. The base program is the foundation of this system and common to all the robot

programs. Concretely speaking, it is composed of classes wrapping the OPEN-R SDK.

The most important class in the base program is the class JPObject, which inherits

the class OObject in OPEN-R SDK. We create a robot program for AIBO by making

a subclass of the class OObject, i.e. the class JPObject is the core of our robot

programs. The class JPObject registers the instances of the constructed modules, and

calls the modules every time certain events occur.

In order to create modules, we only need to make a subclass of abstract classes

(e.g. JPCameraModule for processing camera images, JPActionModule for cal-

culating joint angles during motion, JPSensorModule for managing information

from sensors, and JPMindModule for developing strategies). The abstract classes have

various special functions that are called when the class JPObject receives certain

events. Table 1 shows the speci�cations of the special functions. For instance, the class

JPCameraModule has the function cameraNotify() called every 40 ms in sync

with the frame rate of the CCD-camera. That means, to get an image from the CCD-

camera, we only need to make a subclass of the class JPCameraModule. In the same

way, we can easily create various other modules. By selecting certain modules, we can

make various robot programs not only for soccer players, but also for other events, such

as the open challenge.

5. Embedding Lua

In the four-legged robot league, we only use AIBOs as our robots. Rebooting an AIBO

requires a long time, and its battery may be drained in only 30 minutes. Therefore, some



H. Kobayashi et al. / 5

teams [10,11,12] embedded a scripting language in their system. We also embedded a

scripting language, Lua [7], in our system.

Lua is a scripting language designed to be embedded into C/C++. It has a small

scripting engine with a simple and powerful syntax, and it can easily be embedded. The

C/C++ program in which Lua was embedded can call Lua functions, read/write Lua

variables, and register C/C++ functions.

As shown Figure 1, we embed Lua so that mind modules creating strategies can call

Lua scripts and so that Lua scripts can call methods in other C++ modules.

In a mind module, the Lua function mindNotify() is called in the C++ member

function mindNotify(). We can quite easily call a Lua function by using Luabind [8],

which is a library that lets us intuitively create bindings between C++ and Lua. For

example, in order to call the Lua function mindNotify() that has no argument and

returns nothing, we only need to make the following call.

luabind::call_function<void>(Lua_Status, "mindNotify");

In order for Lua scripts to call methods in other C++ modules, it is necessary to bind

the modules on the C++ side. This means we must register an instance of the modules,

as well as information of the classes and member functions. Using Luabind, we can also

easily bind C++ modules in functions. When embedding scripting languages (e.g. Lua,

Python, and Perl), we typically must de�ne global wrapper functions for functions that

we want to bind. This means we rewrite the bindings whenever we exchange modules.

However, Luabind can cut out this annoying task because it is implemented utilizing

template meta programming. For instance, in order to register a class ExampleModule

with public member functions method1(const char* str) and method2(int

x, int y), we only need to add the following code into any function.

module(Lua_Status) [

class_<ExampleModule>("ExampleModule")

.def("method1", &ExampleModule::method1)

.def("method2", &ExampleModule::method2)

];

get_globals(Lua_Status)["exampleModule"] = this;

The last line registers the instance, assigning the this pointer of the class

ExampleModule to the variable "exampleModule" on the Lua side. After the reg-

istration, we can call the functions within Lua scripts as follows.

exampleModule:method1("hello")

exampleModule:method2(10, 20)

Luabind can also register information regarding class inheritance. We need not

bind in the class AdvancedExampleModule inheriting the class ExampleModule.

Therefore, we need not rewrite our scripts even if we exchange these modules. The same

is true for compatible modules in terms of bindings (e.g. ExampleModule2 having the

same methods that ExampleModule has).



6 H. Kobayashi et al. /

Table 2. A part of the available C++ functions and variables in Lua scripts, which show that we can almost

describe features for soccer players only by writing scripts.

Instance Available functions and variables

faceLED setState(bitvector)

touchSensor clickedBackFront(), clickedBackMiddle(),

clickedBackRear(), clickedHead(),

pressedBackFront(t), pressedBackMiddle(t),

pressedBackRear(t), pressedHead(t), pressedChin()

soundPlayer registWavFile(soundname, filename),

playSoundOnce(soundname), changeVolume(volume),

playSoundRepeat(soundname), playSoundStop()

visionBase landmarksDetect(), ballDetect(),

getLeftLineSlant(), getRightLineSlant(),

getLeftLineIntercept(), getRightLineIntercept()

basicMotion loadMotion(motionname, filename), stopAction(),

playMotion(motionname, state), cancelAction(),

playMotionLoop(motionname, state),

swingHead(tilt1, pan, tilt2, nextstate),

stopSwingHead(), cancelSwingHead(),

loadGait(gaitname, gaitfile, odmeterfile),

setGaitSource(gainame, rate), playGait(),

playGaitLoop(), setGaitFirstFlag(flag)

detectBall getL(), getPan(), getTilt(), getAdvisablePan(),

getAdvisableTilt(), getInSightTilt1(),

getInSightPan(), getInSightTilt2()

ballMCL getX(), getY(), getPan(), getDistance(),

isValid(), addXYV(x, y, dx, dy), shiftXYT(x, y,

theta), update(), nupdate(n)

mcLocalization getX(), getY(), getTheta(), update(), nupdate(n)

udpCom udpSay(words)

psdSensor getHeadPsdValue(), getHeadNearPsdValue(),

getHeadFarPsdValue(), getBodyPsdValue()

gameControlData firstHalf, kickOffTeam, secsRemaining,

dropInTeam, dropInTime, myTeam.teamColour,

myTeam.score, myTeam.player1.penalty,

myTeam.player1.secsTillUnpenalised

accelSensor getAccelX(), getAccelY(), getAccelZ(),

getValueX(i), getValueY(i), getValueZ(i),

getPosture()

6. Speci�cation of Our Robot Scripts

After embedding Lua, high-level processes can be described as scripts. In this accom-

plished framework we can create robot scripts with simple rules that everyone easily

understand.

First, we have to understand the two functions init() and mindNotify() on

the Lua side. The function init(), where we can initialize variables, is called only

once at the beginning. The function mindNotify() is called by the member function

mindNotify() in the mind module. That is to say, it is called every 40 ms.

Next, we have to know how to use the member functions that are bound in the C++

modules. As a concrete example, Table 2 shows a part of the available C++ functions



H. Kobayashi et al. / 7

Figure 2. An example code of our robot script that makes a robot move diagonally-forward to the left and see

a ball, where we use replaceable and extensible modules in our framework.

that we have developed so far. Using these functions, we can almost describe features

for soccer players. That is to say, script programmers need not know complicated C++

programs at all. For example, Figure 2 shows a robot script that makes a robot move

diagonally-forward to the left and see a ball. This �gure also shows that the modules

used there are replaceable and extensible.

7. Conclusions and Future Work

In this paper, we proposed an extensible framework which is suitable for advanced robot

programming in the RoboCup domain. We could create many kinds of robot programs

very easily, because the development process became dramatically more ef�cient. The

plug-in system lets us divide a huge, complex robot program into many different mod-

ules that are manageable chunks that can be concentrated on. The embedded scripting

language lets us ef�ciently create robot scripts. We could create various scripts without

knowing the organization of C++ modules. We could also create various modules and

immediately try them, because binding new modules was either simple or not necessary.

Additionally, there was no need to rewrite scripts when replacing old modules with new

modules.



8 H. Kobayashi et al. /

We created approximately 130 modules and 350 scripts for the RoboCup 2005 com-

petition in Osaka, Japan. Furthermore, we added many scripts and modules during the

competition. It should be noted that many scripts were contributed by undergraduate stu-

dents who had joined our team just two months before the competition, although all of

them were unfamiliar with C++. The reason they were able to contribute is because they

could write scripts intuitively. They were not concerned about complex C++ programs,

and they could concentrate only on the team strategy.

Future work includes the development of the base program for robots other than

AIBO. We will be able to reuse the same modules from AIBO. In the case of creating a

humanoid robot program, we plan to reuse many modules, such as vision, while replacing

the four-legged locomotion module with a two-legged locomotion module.

References

[1] Jolly Pochie �Team for RoboCup Soccer 4-legged Robot League�. http://www.i.

kyushu-u.ac.jp/JollyPochie/.

[2] Alessandro Farinelli, Giorgio Grisetti, and Luca Iocchi. SPQR-RDK: A Modular Framework

for Programming Mobile Robots. In RoboCup 2004: Robot Soccer World Cup VIII, LNAI,

pages 660�653. Springer, 2005.

[3] Thomas Röfer. An Architecture for a National RoboCup Team. In RoboCup 2002: Robot

Soccer World Cup VI, LNAI, pages 417�425. Springer, 2003.

[4] Paul A. Buhler and José M. Vidal. Biter: a Platform for the Teaching and Research of Multia-

gent Systems' Design using RoboCup. In RoboCup 2001: Robot Soccer World Cup V, LNAI,

pages 299�304. Springer, 2002.

[5] Holger Kenn, Stefano Carpin, Max P�ngsthorn, Benjamin Liebald, Ioan Hepes, Catalin Cio-

cov, and Andreas Birk. FAST-Robots: a rapid-prototyping framework for intelligent mobile

robotics. In Arti�cial Intelligence and Applications, 2003.

[6] Alexander Kleiner and Thorsten Buchheim. A Plugin-Based Architecture for Simulation in

the F2000 League. In RoboCup 2003: Robot Soccer World Cup VII, LNAI, pages 434�445.

Springer, 2004.

[7] The Programming Language Lua. http://www.lua.org/.

[8] Luabind. http://luabind.sourceforge.net/.

[9] David S. Touretzky and Ethan J. Tira-Thompson. Tekkotsu: A Framework for AIBO Cog-

nitive Robotics. In Proceedings of the 20th National Conference on Arti�cial Intelligence,

pages 1741�1743. AAAI Press, 2005.

[10] Gilad Buchman, David Cohen, Paul Vernaza, and Daniel D. Lee. The University of Pennsyl-

vania RoboCup 2005 Legged Soccer Team. Technical report, Upenn, 2005.

[11] Ted Wong. The University of New South Wales School of Computer Science and Engineer-

ing. Technical report, rUNSWift, 2004.

[12] Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen, Juan Fasola, Felix von-

Hundelshausen, Douglas Vail, Alex Trevor, Sabine Hauert, and Raquel Ros Espinoza. CM-

Dash'05: Team Report. Technical report, CMDash, 2005.

[13] Jean-Christophe Baillie. URBI: Towards a Universal Robotic Low-Level Programming lan-

guage. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2005.

[14] Douglas Blank, Deepak Kumar, Lisa Meeden, and Holly Yanco. Pyro: A Python-based Ver-

satile Programming Environment for Teaching Robotics. Journal on Educational Resources

in Computing, 3(4):1�15, 2003.


