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Abstract. The behavior of users in certain services indicates their pref-
erences, which may be used to make recommendations for other services
they have never used. However, the cross-domain relation between items
and user preferences is not simple, especially when there are few or no
common users and items across domains. We propose a content-based
cross-domain recommendation method for cold-start users that does not
require user- or item-overlap. We formulate recommendations as an ex-
treme classification problem, and the problem is treated as an instance of
unsupervised domain adaptation. We assess the performance of the ap-
proach in experiments on large datasets collected from Yahoo! JAPAN
video and news services and find that it outperforms several baseline
methods including a cross-domain collaborative filtering method.

Keywords: Cross-domain recommendation · Deep domain adaptation

1 Introduction

Conventional recommender systems are known to be ineffective in cold-start sce-
narios, e.g., when the user is new to the service, or the goal is to recommend
items from a service that the user has not used, because they require knowledge
of the user’s past interactions [32]. On the other hand, as the variety of Web
services has increased, information about cold-start users can often be obtained
from their activities in other services. Therefore, cross-domain recommender sys-
tems (CDRSs), which utilize such information from other domains, have gained
research attention as a promising solution to the cold-start problem [4].

This paper addresses a problem of cross-domain recommendation in which
we cannot expect users or items to be shared across domains. Our task is to
recommend items in a domain (service) to users who have not used it before
but have a history in another domain (see Sec. 5 for details). This situation is
common in practice. For instance, when one service is not known (e.g., when it is
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newly built) to users of another more popular service, there are few overlapping
users, which was actually observed in the dataset of this study. Another probable
instance is when user identities are anonymized to preserve privacy [17]; there
are no shared users in this case because we cannot know if two users are identical
across domains.

The case in which domains have a user- or item-overlap has been extensively
studied because an overlap helps us learn relations between users and items of
different domains [24, 25, 27, 36]. The problem, however, is harder when there is
little or no overlap as learning of user-item relations becomes more challenging.
Previous studies dealt with this challenge by using specific forms of auxiliary
information that are not necessarily available including user search queries on
Bing for recommendations in other Microsoft services [8], tags on items given by
users such as in a photo sharing service, e.g., Flickr [1, 2], and external knowl-
edge repositories such as Wikipedia [9, 19, 20, 23]. Methods that use the content
information of items like this are called content-based (CB) methods. Collabo-
rative filtering (CF) methods, which do not require auxiliary information, have
also been proposed [12, 17, 43]. Despite their broader applicability, a drawback
of CF methods compared to CB ones is that they suffer from data sparsity and
require a substantial amount of user interactions.

Our main contribution is to fill in the gap between CB and CF approaches.
We propose a CB method that (a) only uses content information generally avail-
able to content service providers and (b) does not require shared users or items.
Our approach is the application of unsupervised domain adaptation (DA). Al-
though unsupervised DA has shown fruitful results in machine learning [3, 11,
33], its connection with CDRSs has been largely unexplored. Our formulation
by extreme multi-class classification [6, 30], where labels (items) corresponding
to a user are predicted, allows us the use of this technique. We use a neural
network (NN) architecture for unsupervised DA, the domain separation network
(DSN) [3], because NNs can learn efficient features, as shown in the successful
applications to recommender systems [6, 8, 14, 28, 38–41, 44]. We provide a prac-
tical case study through experiments on large datasets collected from existing
commercial services of Yahoo! JAPAN. We compare our method with several
baselines including the state-of-the-art CF method [17]. We show that (a) the
CF method does not actually perform well in this real application, and (b) our
approach shows the highest performance in DCG.

2 Related Work

Approaches to CDRS can be categorized into two types[4]. The first type ag-
gregates knowledge by combining datasets from multiple domains in a common
format, e.g., a common rating matrix [24]. As a result, user-item overlaps or a
specific data format are typically assumed [1, 2, 8, 25–27, 35]. In particular, the
deep-learning approach [15] uses, as in our method, unstructured texts to learn
user and item representations but assumes a relatively large number of common
users. The second type links domains by transferring learned knowledge. This
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line of research has been limited to matrix-factorization based CF methods be-
cause sharing latent factors across domains allows knowledge transfer [12, 17,
43]. Our method is a CB method and solves the aforementioned data sparsity
problem of CF methods. Also, DA provides an alternative method of knowledge
transfer to shared latent factors.

There are works labeled as cross-domain recommendation that solve a dif-
ferent task. Studies including [7, 22, 29, 42] have dealt with sparsity reduction.
The task is to improve recommendation quality within a target domain and is
not cross-selling from a different domain. This is performed, for example, by
conducting CF on a single domain having sparse data with the help of other
domains, such as using a shared latent factor learned in dense domains [7, 22].
Although the work [42] uses DA, it cannot solve the same problem as ours.

Finally, online reinforcement learning can be used to obtain feedback from
cold-start users [31]. However, it is difficult to deploy it in commercial applica-
tions because the performance is harder to evaluate compared to offline methods
such as ours since the model constantly changes over time.

3 Problem Setting

Let X be the input feature space, such as Rd with a positive integer d. Let
Y = {1, . . . , L} be a collection of items that we wish to recommend. We are
given two datasets from two different domains. The first is a labeled dataset
DS = {(xS

i , y
S
i )}NS

i=1. Each element denotes a user-item pair with ySi ∈ Y being
a label representing the item, and xS

i ∈ X being a feature vector that represents
the previous history of a user and is formed by the content information of the
items in the history. This domain, from which the labeled dataset comes, is
called the source domain. The second dataset5 is DX

T = {xT
i }

NT
i=1, where xT

i ∈ X
denotes the feature vector of a user’s history consisting of items in the other
domain. We call this data domain the target domain. The goal is to recommend
items in the source domain to users in the target domain. Our approach is to
construct a classifier η : X → Y such that η(xT ) gives the most probable item
in Y for a new user history xT from the target domain.

4 Unsupervised Domain Adaptation

We define the problem of unsupervised DA [3, 11]. We are given two datasets

DS
i.i.d.∼ PS and DX

T
i.i.d.∼ PX

T as in the previous section. Here, PS and PT are
probability distributions over X × Y , which are assumed to be similar but dif-
ferent. PX

T is the marginal distribution over X in domain T . The goal of un-
supervised DA is to obtain a classifier η with a low risk defined by RT (η) =
Pr(x,y)∼PT

(
η(x) 6= y

)
only using the datasets DS and DX

T .

5 Superscript X denotes that the data is missing labels associated to their input vec-
tors.
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Domain Separation Networks: We introduce the neural network architec-
ture, domain separation networks (DSNs) [3]. DSN, separately from domain-
specific features, learns predictive domain-invariant features, which gives a shared
representation of inputs from different domains. Figure 1 shows the architecture
of a DSN model, which consists of the following components: a shared encoder
Ec(x; θc), private encoders ES

p (x; θSp ), ET
p (x; θTp ), a shared decoder D(h; θd), and

a classifier G(h; θg), where θc, θ
S
p , θTp , θd, and θg denote parameters. Given an

input vector x, which comes from the source domain or the target domain, a
shared encoder function Ec maps it to a hidden representation hc, which rep-
resents features shared across domains. For the source (target) domain, a DSN
has a private encoder ES

p (ET
p ) that maps an input vector to a hidden rep-

resentation hS
p (hT

p ), which serves as a feature vector specific to the domain.
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Fig. 1: Architecture of DSN

A common decoder D reconstructs
an input vector x of the source
(or target) domain from the sum
of shared and private hidden rep-
resentations: hc and hS

p (hT
p ). The

classifier G takes a shared hidden
representation hc as input and pre-
dicts the corresponding label.

Training is performed by mini-
mizing the following objective func-
tion LDSN with respect to parame-
ters θc, θ

S
p , θTp , θd, and θg: LDSN =

Ltask + αLrecon + βLdiff + γLsim,
where α, β, and γ are parameters
that control the effect of the associated terms. Ltask is a classification loss (cross
entropy loss). Lrecon is a reconstruction loss (squared Euclidean distance). The
loss Ldiff encourages the shared and private encoders to extract different types
of features. As in [3], we impose a soft subspace orthogonality loss. The similar-
ity loss Lsim encourages the shared encoder to produce representations that are
hardly distinguishable. We use the domain adversarial similarity loss [10, 11].

For the output layer of the classifier, we use the softmax activation. We
suggest a list of items in descending order of the output probabilities.

5 Experiments

We conduct performance evaluation on a pair of two real-world datasets in col-
laboration with Yahoo! JAPAN. The datasets consist of the browsing logs of a
video on demand service (VIDEO) and a news aggregator (NEWS). The task is
to recommend videos to NEWS users who have not used the VIDEO service.
Dataset Description: For VIDEO, we create a labeled dataset where a label is
a video watched by a particular user, and the input is the list of videos previously
watched by the user. Similarly, for NEWS, we build an unlabeled dataset that
consists of histories of news articles representing users. The number of instances
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for each dataset is roughly 11 million. For evaluation, we form a test dataset of
size 38, 250 from users who used both services, where each instance is a pair of
a news history (input) and a video (label).

Items in both services have text attributes. For VIDEO, we use the following
attributes: title, category, short description, and cast information. For NEWS,
article title and category are used. We treat a history as a document comprised of
attribute words and represent it with the TF-IDF scheme. We form a vocabulary
set for each dataset according to the TF-IDF value. Combining the two sets gives
a common vocabulary set of 50,000 words.
Experimental Settings: We construct a DSN consisting of fully-connected
layers6. The exponential linear unit (ELU) [5] is used as the activation function
for all layers. The weight and bias parameters for the fully-connected layers are
initialized following [13]. We apply dropout [34] to all fully-connected layers with
the rates 0.25 for all the encoders and 0.5 for the decoder and the classifier. We
also impose an L2 penalty on the weight parameters with the regularization
parameter chosen from {10−1, 10−2, 10−3, 10−4}. The parameters α, β, and γ in
LDSN are set to 10−3, 10−2, and 100, respectively. The parameter γ is chosen by
the similarity of the marginals7 and agrees with the setting in [3]. The ADAM
optimizer [21] is used, and the initial learning rate is set to 10−3.

We use discounted cumulative gain (DCG) [18] for evaluation. DCG gives
a higher score when a correct item appears earlier in a suggested item list and
thus measures ranking quality. This is defined by DCG@M =

∑M
m=1 I(ŷm =

y)/ log(m + 1), where the function I(ŷm = y) returns 1 when the m-th sug-
gested item ŷm is y and otherwise 0. The use of metrics such as precision is
not appropriate since negative feedback is not well-defined in implicit feedback;
unobserved items may express users’ distaste or just have been unseen, whereas
we can treat viewed items as true positive.

We evaluate the method for five different training and test dataset pairs,
which are randomly sampled from the datasets. We sample 80% of both the
whole training and test datasets. For each pair, we compute DCG averaged over
the test set. We use a validation set that consists of logs of common users on
the same dates as the training data for model selection to investigate attainable
performance of domain adaptation. Note that this setting still keeps our target
situation where there are not enough overlapping users for training.
Baseline Models: The following baseline methods are compared.

– Most Popular Items (POP). This suggests the most popular items in the
training data. The comparison with this shows how well the proposed approach
achieves personalization.

– Cross-domain Matrix Factorization (CdMF) [17]. This is the state-of-
the-art collaborative filtering method for CDRSs requiring no user- or item-
over lap. To alleviate sparsity, we eliminate users with history logs fewer than

6 The unit size of each hidden layer is as follows: Ec = ES
p = ET

p = (256−128−128−
64), D = (128− 128− 256), and G = (256− 256− 256− 64). Left is the input.

7 We train a classifier that detects the domain of the input represented by the shared
encoder and test the classification accuracy. This is due to the adversarial training.
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Table 1: Performance comparison of DSN, NN, CdMF, POP. (DCG) of DSN
and NN denotes models that are chosen according to the value of DCG@100.
Similarly, (CEL) denotes the cross entropy loss. Each entry is Mean± Std.

Method DCG@1 DCG@10 DCG@50 DCG@100

DSN (DCG) 0.0618± 0.0212 0.2133± 0.0154 0.2873± 0.0151 0.2945± 0.0153
DSN (CEL) 0.0406± 0.0212 0.1668± 0.0384 0.2583± 0.0230 0.2655± 0.0229
NN (DCG) 0.0415± 0.0211 0.1938± 0.0131 0.2735± 0.0102 0.2797± 0.0107
NN (CEL) 0.0282± 0.0301 0.1616± 0.0279 0.2473± 0.0247 0.2556± 0.0238
CdMF 0.0005± 0.0000 0.0040± 0.0000 0.0135± 0.0000 0.0644± 0.0004
POP 0.0398± 0.0007 0.2099± 0.0012 0.2790± 0.0016 0.2871± 0.0010

5 for the video data and 20 for the news data from the training data. We
construct a user-item matrix for each domain, with the value of observed
entries 1 and of unobserved entries 0. The unobserved entries are randomly
subsampled as the size of the whole unseen entries is too large to be processed.
As with our method, we use 80 percent of the instances for training and the
remaining 20 percent for validation. The hyper-parameters α, β0, and ν0 are
set at the same values as in [17]. The method requires inference of latent
variables by Gibbs sampling; each sampling step involves computing matrix
inverses. Due to the computational complexity, we were unable to optimize
these hyper-parameters, and therefore they are fixed.

– Neural Network (NN). To investigate the effect of DA, the same network
without DA is evaluated. This is obtained by minimizing the same loss as
DSN except that β, γ in LDSN are set to 0. It can be thought of as a strong
content-based single-domain method as more robust features are learned with
the reconstruction loss Lrecon than only with the task loss Ltask(as in [39],
with the roles of item and user swapped).

Experimental Results: We report the results in Table 1. CdMF underper-
formed other methods. As mentioned in [16], this is likely because CdMF cannot
process the implicit feedback or accurately capture the popularity structure in
the dataset. The DSN model chosen by the cross-entropy loss (DSN (CEL)) also
had a worse performance than POP. We also chose the model based on the values
of DCG@100 on the validation set (denoted by DSN (DCG)), which showed the
best performance in all cut-off number settings. This result can be interpreted
as follows. As predicting the most probable item is hard, the cross-entropy loss
does not give a useful signal for model selection. On the other hand, DCG pro-
vides the quality of ranking, and therefore a classifier which captures the joint
distribution of items and users well is more likely to be chosen. The improved
performance of DSN (DCG) over NN (DCG) supports this claim since DA im-
proves the learning of the joint distribution. This implies that replacing the loss
with a ranking loss such as [37] could improve ranking quality.
Conclusion and Future Work: Our evaluation demonstrated the potential of
the proposed DA-based approach. However, extreme classification is still chal-
lenging and should be addressed as a future work. One possible direction would
be incorporation of item information as in [39], as this would make items more
distinguishable and enable predictions of unobserved items.
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